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Abstract 
Tempest is a computational tool that is being developed to predict the seakeeping and 

dynamic stability performance of a steered ship in large waves.  The theory for Tempest is being 
developed in several “levels”.  The difference between the theory levels is in the fidelity and 
complexity of the environment definition and the component force models. This report describes 
the Level-0 theory.  The objective of the Level-0 version of Tempest is to establish a working 
computational tool that provides reasonable seakeeping predictions and to establish the 
framework of the Tempest tool into which the more accurate Level-II and Level-III models can 
be implemented.  The Level-0 theory is based on simple models that include a linear 
hydrodynamic force model based on user-supplied added mass and damping coefficients, a 
nonlinear model for the hydrostatic and Froude-Krylov forces, and empirical models for the 
maneuvering forces and the forces from the bilge keels, rudders and propeller.  This report is a 
compilation of the equations of motion, wave environment, and component-force theory white 
papers provided to the Tempest code developers, DRS Defense Solutions, for implementation of 
the Level-0 theory.   

 

Administrative Information 
The work described in this report was performed at the Naval Surface Warfare Center, 

Carderock Division (NSWCCD) by the Seakeeping Division, Code 5500.  The development of 
the Tempest Level-0 theory white papers described within this report was funded by Naval Sea 
Systems Command (NAVSEA), PMS500, under Program Element 0604300N.  The work was 
performed predominately under work unit 07-1-5500-752-10.  The writing of this report was 
funded by NAVSEA 05D1 under the CPSD SE/TA program supporting Tempest development.  
The associated Program Element is 0603563N and work unit is 09-1-2124-206. 

 

 

Introduction 
Tempest is a computationally efficient time domain tool designed to predict the motions of 

a steered ship in large waves.  It is intended for use as both a seakeeping and a dynamic stability 
prediction tool.  The planning for the development of Tempest was initiated in 2006.  The plan 
called for a multi-phased effort that would promote early progress on the code development 
while the theory is in development, with the goal being that a more polished and complete 
program would be available sooner.  The first phase of the code development is focused on 
creating the foundational code across all three program tiers (Client, Business, and Data) and is 
therefore not expected to be used for actual simulation work applied to real ship designs.  
However, while there is not a need to have accurate simulation results, the components of the 
ship motion theory need to be included to the greatest extent possible in order to provide a 
meaningful basis for developing code related to the inputs and outputs of the Client tier, the 
interactions of the integrators, force models, and other foundational aspects in the Business tier, 
and finally the persistence capabilities and needs in the Data tier.  To support this need, a so-
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called “Level-0” theory has been established that provides a nearly complete, though lower 
fidelity, ship motion theory to be implemented in the first release of Tempest.  The Level-0 code 
is mainly based on simple theories that can be used to develop a working code that produces 
“reasonable” predictions. 

Several “levels” of theory will be developed for Tempest.  All levels of the theory are 
based on the same rigid body equations of motion and time stepping technique.  The difference 
between the levels is in the fidelity and complexity of the environment definition and the 
component force models.  This theory manual describes the theory implemented in “Level-0” 
Tempest code.  The objective of the “Level-0” theory is to develop a well-documented 
framework into which the more accurate Level-II and Level-III theories can later be 
implemented.  The Level-0 theory will use very approximate methods for certain force 
components such as the radiation, diffraction and maneuvering force models, as these will be 
replaced by completely new force models as the Level-II and Level-III theories are developed.  
Certain components of the Level-0 theory such as the equations of motion and time integration 
schemes and the hydrostatic and Froude-Krylov force models are intended to carry over to 
Level-II and possibly even into Level-III with only minor modifications.   

The theory described in this document was developed from a variety of sources.  The 
outline of the theoretical structure of Tempest was developed by a core group at Naval Surface 
Warfare Center, Carderock Division (NSWCCD).  A Theory Advisory Panel (TAP) was formed 
to review and assist in the theory development for Tempest.  A series of white papers were 
written, with each white paper discussing a specific aspect of the code.  

The Level-0 theory has been developed in the Seakeeping Division (Code 55) of NSWCCD 
in West Bethesda, MD.  Code development has been performed by DRS Defense Solutions in 
Stevensville, MD.  The theory has been documented and communicated to the code developers 
incrementally in the form of “Level-0 theory white papers”.   

The present document provides a record of these theory white papers within a single report 
that is able to be referenced. The following document is not intended to be a comprehensive 
theory manual, but rather a compilation of the theory documents from which the Level-0 code is 
developed.  
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1 Nomenclature 
The nomenclature tables below describe the variables used in the Tempest theory 

development.  As this is a theory manual that has been developed from the compilation of 
several component theory documents, the nomenclature has been broken into several sections 
corresponding to the significant theory areas.  The first section describes the nomenclature 
pertaining to the wind and wave environment.  The second section describes the nomenclature 
used for the general equations of motions and the coordinate systems used throughout the theory.  
The remaining sections describe the nomenclature used in the various force modules.   

The nomenclature will be consistent throughout the theory manual.  In some instances a 
symbol may have multiple definitions.  For instance the symbol “T” may mean wave period in 
the wave and wind environment theory, thrust in the propeller force module theory, and draft in 
the bilge keel damping theory.  In these instances it will always be obvious which meaning the 
symbol has in any given equation.  Where possible these conflicts are avoided by not using the 
same symbol for different variables, but only to the extent to which it helps to clarify the theory.  
If a commonly accepted symbol exists (i.e., T for both period and draft,  for wavelength, etc.) 
then that symbol is always used. 

Careful attention is paid, however, to make sure that two different symbols are not used for 
the same variable (i.e. using both  and  for wave elevation in different sections of the theory 
manual).  With regard to the coordinate system definitions, upper case (X,Y,Z) are used to refer to 
coordinates in the earth-fixed system and lower case (x,y,z) are used to refer to coordinates in the 
ship-fixed system. 

 

1.1 Wave Environment 
 

Symbol Definition SI Units 

aj (Real-valued) first order wave amplitude equal to half the 
distance from the trough to the crest 
 

m 

ajk (Real-valued) second order wave amplitude m 

c Wave celerity (phase velocity) m/s 

cg Group velocity of wave m/s 

E( ) Expected value of a random variable  

f Wave frequency in units of cycles / second cycles/s 

g Acceleration due to gravity m/s2 

G Directional spreading function  

h Water depth m 

HS Significant wave height m 
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k Wave number rad/m 

mn nth moment of a spectrum m2(1/sec)n 

N Number of wave components  

N Number of spreading angles  

S Spectral density m2sec/rad 

t Time s 

T Wave period s 

Tm Modal wave period s 

uw, vw, ww Wave orbital velocities in earth-fixed X, Y and Z directions m/s 

www wvu  ,,  Wave orbital accelerations in earth-fixed X, Y and Z 
directions 

m/s2 

Z’ Modified Z position for pressure stretching m 

Zjk Quadratic transfer function  

 Wheeler’s depth decay modifier  

 Direction of wave propagation measured from the positive 
X-axis counterclockwise about the Z-axis 
 

radians 

0 Direction of primary wave system radians 

A Spreading angle radians 

L Lower limit on wave component direction for spread seas radians 

U Upper limit on wave component direction for spread seas radians 

W Direction of wind measured from the positive X-axis 
counterclockwise about the Z-axis.  If ship is traveling in the 
positive X direction, 0 will be a tail wind. 
 

radians 

 Wave phase angle radians 

 Velocity potential m2/s 

 JONSWAP peak enhancement factor  

 Wave length m 

 Water density kg/m3 

 Wave frequency rad/s 

llim Lower truncation limit of the spectral frequencies rad/s 

m Modal wave frequency rad/s 
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ulim Upper truncation limit of the spectral frequencies rad/s 

 Wave elevation m 

   

 
 

1.2 Equations of Motion and Coordinate Systems 
 

Symbol Definition SI Units 

Aij Added mass at infinite frequency in the ith mode due to unit 
acceleration in the jth direction 

kg 

Aij’ Added mass at wave encounter frequency  kg 

F

 Total force vector in ship-fixed reference frame N 

F 

 Total force vector in ship-fixed reference frame, not 

including weight and infinite frequency added mass force 
N 

Ixx, Iyy, Izz Moments of inertia about ship-fixed origin kg m2 

Ixy, Iyz, Izx Products of inertia about ship-fixed origin kg m2 

M


 Total moment vector in ship-fixed reference frame N m 

M 


 Total moment vector in ship-fixed reference frame, not 
including moment due to ships weight and infinite frequency 
added mass 

N m 

m Mass of the ship kg 

p, q, r Angular velocities about the three ship-fixed axes rad/s 

 rq  ,p  ,  Angular accelerations about the three ship-fixed axes 
 

rad/s2 

u, v, w Velocities in the x,y,z directions (ship-fixed), respectively m/s 

wvu  ,,  Accelerations in the x,y,z directions (ship-fixed). m/s2 

W Weight of the ship (m∙g) N 

X,Y,Z Position of the origin of the ship-fixed axes system relative to 
the earth-fixed axes system 

m 

zyx  ,,  Velocity of ship origin in the earth-fixed frame m/s 

1, 2, 3, 4 The components of the quaternion  

    ,   ,  Euler angles: roll, pitch and yaw rad 

     ,   ,  Time derivatives of Euler angles  
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1.3 Bilge keel force module 
 

Symbol Definition SI Units 

 Roll amplitude rad 

 Bilge keel breadth (height) m 

 Block coefficient - 

 Midship section coefficient - 

 Bilge keel length m 

 Length between perpendiculars m 

 Vertical center of gravity w.r.t. waterline m 

 Roll velocity rad/s 

 Mean distance from G to bilge keel m 

 Bilge radius m 

 Sectional draft m 

 Ship speed m/s 

 Ship reference speed = 10m/s m/s 

 Vertical center of gravity w.r.t. keel m 

 Longitudinal coordinate m 

 Angle between the line connecting CG and the bilge keel 
root and the horizontal through CG 
 

rad 

 Angle between the line connecting CG and the bilge keel 
root and the bilge keel plane 
 

rad 

 Density of water kg/m3 

 Sectional area coefficient - 

 Roll frequency rad/s 

 
  

A

( )BKb x

BC

MC

BKL

ppL

OG

p

( )BKr x

R

( )T x

U

10U

VCG

x







( )x


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1.4 Rudder Force Module 
 

Symbol Definition SI Units 

a Aspect ratio of rudder (geometric aspect ratio)  

ae Effective aspect ratio  

AR Area of rudder planform m2 

cr Chord at root of rudder m 

ct Chord at tip of rudder m 

xc,yc,zc Location of the center of pressure of the rudder m 

xm,ym,zm Location of the midspan point along quarter chord line m 

xr,yr,zr Location of the rudder root quarter-chord point m 

xt,yt,zt Location of the rudder tip quarter-chord point m 

b  Mean rudder span.  Note that this is sometimes referred to as 
the “semi-span” such as in Whicker and Fehlner, 1958 

m 

c  Mean rudder chord (average of tip and root chord) m 

CL Lift Coefficient  

CD Drag Coefficient  

CDC Cross flow drag coefficient  

Cd0 Minimum section drag coefficient (0.0065 for NACA 0015 
sect.) 

 

CN Normal force coefficient for a wing in stalled condition as 
described in Hoerner (1975).  Recommended value 1.8 to 
2.0. 

 

RF


 Force vector for rudder force in ship-fixed reference frame N 

L Lift from rudder N 

M R


 Moment vector defining moment from rudder in ship-fixed 

reference frame. 
N m 

d Drag on rudder N 

D Diameter of propeller m 

T Propeller thrust N 

p, q, r Angular velocities about the three ship-fixed axes rad/s 

u, v,w Velocity of the ship at the ship-fixed reference frame origin 
in the x,y,z directions (ship-fixed), respectively. 

m/s 

uw, vw, ww Wave orbital velocity at the rudder, defined in the ship-fixed m/s 
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frame 

wF Wake fraction coefficient - 

 Angle of attack rad 

S Stall angle rad 

 Drift angle of flow into rudder rad 

 Rudder deflection angle 
 

rad 

 Density of water in which rudder is operating kg/m3 

   Taper ratio (ct /cr) 
 

- 

 Sweep angle of quarter-chord line rad 

R Flow straightening factor, used to adjust the angle of attack 
of the rudder to account for the flow straightening influence 
of the hull and propeller.  (default value 1.0) 

 

R Dihedral angle of rudder, which is measured as the 
inclination from vertical with a positive angle indicating the 
rudder tip is further to starboard than the rudder root. 

rad 

   

  
 

1.5 Propeller Force Module 
 

Symbol Definition SI Units 

AD Area of propeller disk m2 

AS Area of submerged portion of propeller disk 
 

m2 

D Diameter of the propeller m 

FCross Component of the propeller force perpendicular to the 
propeller shaft in the direction of the cross flow  
 

N 

FNorm Component of the propeller force perpendicular to both the 
propeller shaft and cross flow 

N 

PF


 Force vector for propeller force in ship-fixed reference frame N 

J Advance coefficient - 

KT Propeller thrust coefficient - 

M P


 Moment vector defining moment from propeller in ship-fixed 

reference frame 
N m 
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n Rotational speed of the propeller, revolutions per second rev/s 

Sn


 Unit vector defining direction of propeller shaft in ship-fixed 
frame 

- 

Cn


 Unit vector defining direction of cross flow - 

Nn


 Unit vector defining the direction normal to cross flow and 
propeller shaft 

- 

p, q, r Angular velocities about the three ship-fixed axes rad/s 

R Propeller radius m 

RHP Integer flag defining whether propeller is right hand turning 
or left hand turning (+1 for right hand turning, -1 for left 
hand turning) 

 

T Propeller thrust (component of propeller force parallel to 
propeller shaft) 

N 

tP Thrust deduction coefficient  

UA Component of velocity vector at center of propeller disk that 
is parallel to the propeller shaft 

 

PU


 Total velocity vector at the center of the propeller disk m/s 

CROSSU


 Cross flow velocity vector at the center of the propeller disk m/s 

VA Advance velocity into propeller disk m/s 

u, v, w Velocity of the ship at the ship-fixed reference frame origin 
in the x,y,z directions (ship-fixed), respectively 

m/s 

uw, vw, ww Wave orbital velocity at the center of the prop disk, defined 
in the ship-fixed frame 

 

wF Wake fraction coefficient  

xP, yP, zP Position of the center of the propeller disk in the ship-fixed 
reference frame. 

 

E
WZ  Wave elevation above propeller, defined in earth-fixed frame  

S   Angle between the x-axis of the ship-fixed frame and the 
projection of the shaft axis onto the vertical plane of 
symmetry of the ship.  A positive angle indicates that the 
shaft points downwards 

 

S Angle of the propeller shaft in the horizontal plane relative to 
the ship x-axis, positive to port. 

 

 Flow straightening factor, used to adjust S to account for the 
flow straightening influence of the hull. 

 

 Density of the fluid  

S Angle between shaft axis and total velocity vector at the 
center of the propeller disk 
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2 Theory Overview 
The core ‘physics engine’ within the time-domain simulator solves the system of ordinary 

differential equations that describe the equations of motion (for rigid bodies) and propagates the 
solutions forward in time.  The time-domain simulator and equations of motion are described in 
Section 3.  At each time step the total force on the ship must be computed.  In order to compute 
the forces on the ship, the environment in which the ship is operating must first be evaluated, 
which may include the wind and current in addition to the wave environment.  The environment 
model will be able to compute the pressure and velocity field at any arbitrary point.  In the 
“Level-0” implementation of Tempest, the environment consists only of the superposition of 
linear long crested waves as described in Section 4.  When the ship is operating in waves it is 
necessary to control the rudders to keep the ship on course.  Tempest uses a PID controller for 
the rudder which is described in Section 5.  In Tempest it will be assumed that the total force on 
the ship can be decomposed into various force contributions, and the total forces on the hull at 
each time step can therefore be obtained by summing the various force contributions.  In the 
Level-0 theory, the following force contributions will be considered: 

 

 Hydrostatic forces 

 Froude-Krylov forces 

 Radiation forces 

 Diffraction forces 

 Hull resistance  

 Bilge keel forces 

 Bare hull maneuvering forces (includes skeg force) 

 Rudder and fin forces 

 Propulsion forces 

 Weight of ship 

 

The total force on the ship at each time step is then computed as the sum of component 
forces.  The theory used to compute each component force is described in Section 6.  The total 
force will be used to solve the rigid body equations of motion in ship-fixed coordinate system at 
each time step.  
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3 Equations of Motion 

3.1 Summary 
Tempest will use a time stepping method to solve the Euler equations of motion to predict 

the motion of a ship.  This section presents the theory for setting up the equations of motion.  
The equations of motion are derived from Newton’s Second Law: 

 
[ ]

F ma

M I 





 

    (3.1)
 

Equation (3.1) must be applied in an inertial coordinate system.  It would be possible to 
solve these equations directly in the inertial coordinate system, however the inertia tensor, [I], as 
well as many of the force components, is defined in a ship-fixed axis system and would have to 
be derived or transformed into the inertial system at each time step.  Therefore, transformations 
are applied to develop the equations of motion in a ship-fixed coordinate system, resulting in the 
Euler equations of motion for a rigid body.  The derivation of the Euler equation of motion can 
be found in several sources including Abkowitz (1969) and Etkin (1982). 

 The force and moment vectors in Equation (3.1) represent the total force and moment 
acting on the vessel.    In this document, the term “forces” will hereafter be assumed to include 
both forces and moments.   The total force on the ship at each time step will be computed by 
summing the component forces described in Section 6. 

The equations will first be formulated making no assumptions concerning the symmetry of 
the ship or the location of the center of gravity of the ship relative to the origin.  In the Level-0 
theory, however, it will be assumed that the ship is symmetric and that the origin of the ship-
fixed coordinate system coincides with the center of gravity.  These assumptions will be used to 
generate a simplified set of equations for implementation in the Level-0 Tempest code.  No 
assumptions are made that the ship-fixed axis system is aligned with the principal axes of the 
ship, even in Level-0.  This results in additional terms containing the cross products of inertia, 
which are often assumed to be zero. 

The weight of the ship and the forces from the infinite frequency added mass terms are 
included in the equations of motion presented in this section.  The theories for the computation 
of all the other force components are described in Section 6.   The equations described in this 
document assume that the forces acting on the ship have been transformed to the ship-fixed 
coordinate system. 

Propagating the solution to the equations of motion is the job of a numerical integrator. 
This propagation is often done using a linear Euler integration scheme, (i.e.

 xtxx ii 1 ), 

where the dot over the x indicates differentiation with respect to time. Though this simple 
scheme is adequate for non-oscillatory systems when used with a sufficiently small time step, in 
general, higher order integrators should be used. Of course, more accurate integration schemes 
tend to involve more calls to the underlying force models and equations of motion.  Four 
different integrators were developed for Tempest: Euler, Modified Euler, 4th Order Runge-Kutta, 
and Adams-Bashforth.  Additional integrators could easily be added as new components.  The 
equations are formulated initially for the Level-0 code, with the intention that they can probably 
be extended with only minor modifications to the Level-II and Level-III theory implementations 



 

12 

of Tempest.  Some of the assumptions regarding symmetry and the location of the center of 
gravity may be removed in the Level-II and Level-III implementations.   

3.2 Coordinate Systems for Equations of Motion 
The equations of motion are set up to describe the trajectory of the ship-fixed reference 

system relative to an earth-fixed reference system.  The earth-fixed reference frame, 
EEE ZYXO , is 

assumed to be a right-handed coordinate system with the Z-axis positive upwards and the origin 
on the calm water surface.  The ship-fixed reference frame, 

SSS zyxO , is a right handed system with 

the x-axis positive forward through the bow, y-axis positive to port, and the z-axis positive 
upwards.  In the Level-0 implementation of Tempest, the origin of the ship-fixed system 
coincides with the center of gravity of the ship.  Later implementations may remove this 
requirement, so the equations will first be developed for an arbitrary location of the origin.  The 

SSS zyxO  axis system is fixed with the ship and moves with all the motions of the ship.  The 

EEE ZYXO  axis system is fixed to the earth.  A third axis system, 
''' zyxO , is required to compute 

some of the linearized seakeeping forces.   This axis system moves in the earth-fixed X and Y 
direction and rotates with yaw to align with the origin of the ship-fixed system. This third 
system’s x-y plane remains parallel to the calm water surface, and it does not heave, pitch, or roll 
relative to the earth-fixed system.  Its origin is the same as the ship-fixed origin, though in some 
special cases may be directly below the ship-fixed origin on the calm water surface (ZE = 0). 

The solution to the equations of motion will provide the position of the ship-fixed reference 
frame relative to the earth-fixed frame at each time step.   This can be described with six 
variables: the (X,Y,Z) position of the origin of the ship-fixed reference frame relative to the earth-
fixed frame and the three Euler angles: ,  and , which represent the roll, pitch, and yaw of the 
ship-fixed reference frame.  The order of the rotations are important and must be performed in 
the order: , , .  When the rotations are taken in this order, the definitions of yaw (), pitch 
(), and roll () are as follows: 

 yaw (): The angle between the vertical plane defined by the earth-fixed X, Z plane and 
the earth-fixed vertical plane passing through the ship-fixed x axis (the plane defined by 
the ship-fixed x axis and the earth-fixed Z axis translated to the ship-fixed origin).  
Positive yaw is defined using a right hand rule about the Z axis. 

 pitch (): The angle of elevation of the ship-fixed x axis relative to the earth-fixed X, Y 
plane.  Positive pitch is bow down. 

 roll ():  The angle between the ship-fixed x,z plane and the earth-fixed vertical plane 
passing through the ship-fixed x axis (the plane defined by the ship-fixed x axis and the 
earth-fixed Z axis translated to the ship-fixed origin).  Positive roll angle is defined using 
a right hand rule about the x axis.  Positive roll is to starboard. 

When transforming translational velocities, forces and moments from the ship-fixed frame 
to the earth-fixed frame, the transformation matrix [TS/E] is used, where this matrix is defined as: 

 


























coscossincossin

sincossincossinsinsinsincoscossincos

coscossinsinsincossinsinsincoscoscos

/ EST      (3.2) 
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Alternatively, the quaternion representation can be used  to formulate the position and 
orientation of the ship-fixed frame relative to the earth-fixed frame can be formulated in terms of 
the (X,Y,Z) position of the origin of the ship-fixed reference frame relative to the earth-fixed 
frame and the quaternion, .  The quaternion is formed by four components: 





















4

3

2

1






  (3.3)
 

 
The transformation matrix [TS/E] can be formulated in terms of the quaternion as: 
 

 





















)(21)(2)(2

)(2)(21)(2

)(2)(2)(21

2
2

2
141324231

4132
2
3

2
14321

42314321
2
3

2
2

/





EST  
(3.4)

 

 
The quaternion components satisfy the constraint equation: 

12
4

2
3

2
2

2
1    (3.5) 

  
The quaternion components can be computed from the Euler angles and vice versa.  The 
equations to obtain the quaternion from the Euler angles are: 
   

            

1

2

3

cos cos sin sin sin cos
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

sin cos cos cos sin s
2 2 2 2 2

     

     

    

                       
           
                       
           
                   
         

4

in
2

cos cos cos sin sin sin
2 2 2 2 2 2



     

 
 
 

                       
           

 

 

 

 

(3.6) 

 
  
For most cases the initial roll, pitch and yaw will be zero, in which case the initial value of the 
quaternion is (0,0,0,1).  The equations used to obtain the Euler angles from the quaternion are: 














)(21

)(2
arctan

2
2

2
1

4132


  

 )(2arcsin 3142    

1 2 3 4
2 2
2 3

2( )
arctan

1 2( )

   
 

 
    

 

 

 

(3.7) 
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The transformation matrix [TS/E] is used to transform the position or translational velocity of 
point in the ship-fixed frame to the earth-fixed frame.  To compute the earth-fixed translational 
velocities the formula is: 

 

































w

v

u

T

Z

Y

X

ES /







 
(3.8) 

 
To convert the x,y,z position of a point defined in the ship-fixed frame to the earth-fixed frame, 
the formula is: 

 
fixedShip

/

fixedEarth 


















































z

y

x

T

Z

Y

X

Z

Y

X

ES
 

(3.9) 

 
where the (X,Y,Z) vector on the left hand side is the position of the point in the earth-fixed frame, 
the first (X,Y,Z) vector on the right hand side is the position of the origin of the ship-fixed frame 
defined in the earth-fixed frame, and the last (x,y,z) vector is the position of the point in the ship-
fixed frame.  The matrix [TS/E] is orthogonal, so its inverse is simply the transpose of the matrix, 
which can be used to perform transformations in the opposite direction to convert quantities from 
the earth-fixed frame to the ship-fixed frame. 
 

   













































)(21)(2)(2

)(2)(21)(2

)(2)(2)(21

coscossincossincossincoscossinsinsin

sincossinsinsincoscoscossinsinsincos

sinsincoscoscos

3
2

2
141324231

4132
3
3

2
14321

42314321
3
3

2
2

//









T

ESSE TT

 

 (3.10)
and: 

 

































Z

Y

X

T

w

v

u

SE







/  
 

(3.11)

 
A different set of equations are required to compute the time derivatives of the Euler angles 

from the angular velocities defined in the ship-fixed axis system and vise-versa.  Note that the 
derivatives of the Euler angles are not the rotational velocities with respect to the earth-fixed 
reference frame, but rather the rate of change in the roll, pitch and yaw as defined above.  The 
Euler angle derivatives do not form an angular velocity vector, as they do not represent rotations 
about an orthogonal set of axes.  Therefore the matrix that is used to transform is not orthogonal.  
The following transformation matrix is used to compute the rotational velocity vector in the ship-
fixed frame, (p,q,r), when the Euler angle derivatives ),,(   , are known: 
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



































































coscossin0

sincoscos0

sin01

r

q

p

 
 

(3.12)

 
The matrix can be inverted to compute the Euler angle derivatives ),,(    from the 

rotational velocity vector in the ship-fixed frame (p,q,r):    




















































r

q

p














cos
cos

cos
sin0

sincos0

costansintan1







 

 

(3.13)

 
There is a singularity in the transformation matrix shown above when the pitch angle of the 

ship is 90°, however this is not expected to be a problem for a surface ship, even if the ship is 
operating in very large waves.  This problem can be avoided when the quaternion formulation is 
used.  With the quaternion representation, the time derivative of the quaternion is computed 
instead of the time derivative of the Euler angles.   The time derivate of the Euler angles can be 
computed from (p,q,r): 































































4

3

2

1

4

3

2

1

0

0

0

0

2

1











rqp

rpq

qpr

pqr









 

 

(3.14)

 
Finally a transformation matrix may be required to transform forces and velocities from the 

yawed upright axis system, 
''' zyxO , to the ship-fixed axis system.  The matrix used to transform 

quantities from the yawed upright frame to the ship-fixed frame is the matrix [TU/S] which is 
shown below.  This matrix is orthogonal, so its inverse is simply the transpose of the matrix.   

 


























coscossinsincos

cossincossinsin

sin0cos

/ SUT  
 

(3.15)

 

 























coscoscossinsin

sincos0

sincossinsincos

][ //
T

SUUS TT  
 

(3.16)
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Figure 3-1 Definition of reference frames used in equations of motion 

 

3.2.1 Heading Definitions 
Tempest allows the ship to head in any direction within the earth-fixed coordinate system, 

and likewise allows waves to travel in any direction.  The ship heading is defined as the angle , 
which is equivalent to the yaw angle defined in the Section 3.2.    The heading of a wave system 
in earth-fixed coordinates is defined by the angle .   The relative wave heading, which is the 
heading of the wave system relative to the ship’s heading, is given by: 

n n     (3.17)  

The ship heading, wave heading, and relative wave heading, are shown in Figure 3-2. 
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Figure 3-2 Definition of ship heading and wave heading angles 

3.3 General Formulation 
In Tempest the equations of motion using both an Euler angle formulation and a quaternion 

formulation will be implemented.  The majority of the implantation is identical for both 
formulations, with the primary difference being that the time integration is performed on the 
derivatives of the Euler angles or quaternion components.  The equations of motion for a six-
degree-of-freedom rigid body can be derived from Newton's Laws of Motion (see Abkowitz 
(1969) and Etkin (1982), for example).  If the mass of the body and the mass distribution are 
constant over time, then the equations can be written as:  

  sin)()()( 22 WFqprzrpqyrqxrvqwum xGGG    

 

   sincos)()()( 22 WFrqpxpqrzprypwruvm yGGG    

 

   coscos)()()( 22 WFprqyqrpxqpzqupvwm zGGG    

 
         

 sincoscoscos

)()(

WzWyM

urwpvzvpuqwymI  q - r + I pqr - I q - pr  + qr I - I + p  I

GGx

GGyz
22

zxxyyyzzxx



 

 
 

         
 sincoscos

)()(

WzWxM

vpuqwxwqvruzmI  r - qp + I r - p + I  qr +  p  - rp I - I + q  I

GGy

GGyzzx
22

xyzzxxyy



 

 



Y 

X 



 = 

 = Ship heading 
 = Primary Wave heading 
n = Wave Heading of nth 
wave system
 = Relative wave heading 

“Heading of primary 
wave relative to ship” 

Primary 
wave 

system 

Not Shown: 
  
n = Relative nth wave heading 

  n = n – 

n,0 = nth wave system heading 
relative to primary waves 

  n,0 = n – 0 

nth wave 
system 

n 

Note: Z is + out of the page 
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         
 sinsincos

)()(

WyWxM

wqvruyurwpvxmI  rpq - I  p - rq + I p - q  + pq I - I + r  I

GGz
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22

xxyyzz



 

 
 (3.18)

The Euler angle terms that appear in the above equations result from the transformation of 
the weight force vector from the earth-fixed frame to the ship-fixed frame.  If the quaternion 
formulation is used, the relations shown below can be substituted to formulate the equations in 
terms of the quaternion components. 

)(21coscos

)(2sincos

)(2sin

3
2

2
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It has been found that moving the terms related to the infinite frequency added mass to the 

left hand side of the equations of motion improves the stability of the system. This will be 
implemented in Tempest.   In the Level-0 implementation it will be the total added mass, 
obtained by interpolating the added mass at the wave encounter frequency, that will be included 
on the left hand side of the equations of motion, instead of the infinite frequency added mass 
terms.  In almost all cases, the geometry of the ship will be symmetrical, in which case many of 
the added mass terms in the above matrix will be zero.   Any added mass coefficient with one 
even subscript and one odd subscript will be zero for an upright symmetric ship on the calm 
water surface.   For the “Level-0” theory, the added mass and damping coefficients will be 
computed using a method that is linearized about this condition, and in this case A12, A14, A24, etc 
can be assumed to be zero.  However, in higher levels of theory this linear approximation may 
not be used, and symmetry cannot be used when computing the added mass and damping terms 
for a heeled ship.  For this reason, all the terms in the added mass and damping matrices will be 
included in the general derivation.  A simplified derivation for implementation in “Level-0” will 
be provided in the following section. 

The six equations will be formulated to solve for the acceleration terms in each mode, with 
terms related to the velocity and displacement in each mode appearing on the right hand side, 
computed using values from previous or intermediate time steps depending on the time 
integration scheme used.  In matrix form the equations will appear as shown below:  
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The coefficients of the left hand side matrix are defined below.   

 
a11 = m+A11 

a12 = A12 
a13 = A13 
a14 = A14 
a15 = zG m +A15 
a16 = - yG m +A16 
 
a21 = A21 
a22 = m + A22 
a23 = A23 
a24 = -zG m + A24 
a25 = A25 
a26 = xG m + A26 
 
a31 = A21 

a32 = A32 

a33 = m + A33 
a34 = yG m + A34 
a35 = -xG m + A35 
a36 = A36 
 
a41 =  A41 

a42 = -zG m + A42 
a43 =  yG m + A43 
a44 =  I44 + A44 
a45 = -Ixy + A45 
a46 = -Izx + A46 
 
a51 =  ZG m + A51 

a52 =  A52 
a53 = -xGm + A53 
a54 = -Ixy + A54 
a55 =  Iyy + A55 
a56 = -Izx + A56 
 
a61 = -yG m + A61 

a62 =  xG m + A62 
a63 =  A63 
a64 = -Izx + A64 
a65 = -Iyz + A65 
a66 =  Izz + A66 
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 przpqy)r(qqw-rv-xm-θ W  F  rhs GGGx  22
1 sin  

 qpxqrz)p(rpw-yrum- W  F  rhs GGGy  22
2 sincos   

 rqyrpx)q(pqu-zpvm-θ W F  rhs GGGz  22
3 sincos  
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sinsincos6
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GG
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 (3.21)
 

F' and M' are the total forces and moments not including the weight of the ship and the 
force contribution from the infinite frequency added mass terms. 

At every time step, the six equations listed above in matrix form are solved to compute the 
accelerations in the ship-fixed frame, ),,,,,( rqpwvu  .  The ship-fixed accelerations are integrated 
with time to obtain the ship-fixed velocities (u,v,w,p,q,r).  

 dtuuu 0     ,       dtvvv 0      ,        dtwww 0  

 dtppp 0    ,       dtqqq 0     ,        dtrrr 0  

 

(3.22)

Here (u0,v0,w0,p0,r0,q0) are the initial translational and rotational velocities in the ship-fixed 
frame.   

Up to this point the procedure is identical for the Euler angle formulation and the 
quaternion formulation.  The next step is where the two formulations differ.  In the Euler angle 
formulation, the time derivatives of the Euler angles derivatives ),,(   are computed from the 
ship-fixed rotation velocities (p,q,r), using Eqn. (3.13).  The time integration is performed on the 
Euler angle derivatives to obtain the Euler angles at the current time step: 

 dt 
0    ,       dt 

0       ,        dt 0       

 

(3.23)

where  0, 0, and 0 are the initial roll, pitch and yaw angles of the ship.   

In the quaternion formulation, the time derivatives of the quaternion components are 
computed instead of the time derivatives of the Euler angles, and then the time integration is 
performed for the quaternion instead of the Euler angles.   
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 dt10_11     ,   dt20_22    

 dt30_33    ,   dt40_44    

 

(3.24)

The _0 subscript indicates the initial value.   For the quaternion formulation, numerical 
integration errors accumulate so that the constraint imposed by in Eqn. (3.5) is no longer 
satisfied.  The quaternion should be re-normalized at regular intervals during the simulation to 
satisfy Eqn. (3.5). 

The transformation matrix [TS/E] is then computed using either Eqn. (3.2) in the Euler angle 
formulation or Eqn. (3.4) in the quaternion formulation.  The ship-fixed translational velocities 
(u,v,w) are then transformed to the translational velocities in the earth-fixed frame ),,( zyx  , and 
then integrated to obtain the position of the ship relative to the earth-fixed frame. 

 dtXXX 
0     ,       dtYYY 

0      ,        dtZZZ 
0  (3.25)

where (X0,Y0,Z0) is the initial position of the ship-fixed origin defined in the earth-fixed frame.   

3.4 Restricting degrees of freedom 
In certain cases it may be desired to restrict the ship in one or more degrees of freedom.  

This may be necessary to simulate a model test where the model was free to move only in some 
degrees of freedom, or to compute forces on a ship with a prescribed motion.  The restriction on 
the motion of the ship can be applied either in the earth-fixed frame or in the ship-fixed frame.  
In the case where the restrictions are imposed in the ship-fixed frame, the time history of the 
ship-fixed acceleration in the restricted degrees of freedom will be provided as input.  
Alternatively the time history of the ship-fixed velocity can be specified as input and the 
accelerations computed by differentiation.  Eqn. (3.20) will still be used to solve for all six 
accelerations in the ship-fixed frame.  However, the ship-fixed acceleration component 
corresponding to restricted degrees of freedoms rorqpwvu  ,,,, will be set to the user-specified 
value prior to performing the integration to compute the ship-fixed velocities.  The computed 
values for ship-fixed accelerations from solving Eqn. (3.20) can be used to compute the forces 
and moments that must be applied to restrict the ship in the specified degree of freedoms.   

In some instances, such as simulating a model test where the ship is restricted by using a 
heave staff, it is the motion in the earth-fixed frame that is restricted.   In this case one or more 
components of translational velocity vector in the earth-fixed frame, ),,( ZYX  , or one or more of 

the time derivatives of the Euler angles, ),,(   , must be provided as input.  For this case, the 
ship-fixed accelerations and velocities will first be computed without any restrictions.   Then the 
unrestricted values for ),,( ZYX  are computed using Eqn. (3.8) and the unrestricted values for 

),,(    are computed using Eqn. (3.13).  The values for ),,( ZYX   and ),,(    in the restricted 
modes are then replaced with their prescribed values.  The ship-fixed velocities, (u,v,w,p,q,r), 
including the effects of the restricted motion can then be computed using Eqns. (3.11) and (3.12). 

3.5 Simplified Formulation for Level-0 Implementation 
In the Level-0 implementation of Tempest, several assumptions will be made which result 

in a simpler form of the equation of motion.   These assumptions are: 
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- The origin of the ship-fixed frame is at the center of gravity of the ship 

- The geometry of the ship is symmetric, so any added mass terms with both an even and 
odd subscript can be set to zero. 

- The complete added mass interpolated at the encounter frequency will be included on the 
left hand side of the equations in Level-0, as described in the Section 6.2.1.3. 

 

With these assumptions, the equations of motion simplify to: 
 

  sinWFrvqwum x   

 
   sincosWFpwruvm y   

 
   coscosWFqupvwm z   

 

        xyz
22

zxxyyyzzxx MI  q - r + I pqr - I q - pr  + qr I - I + p  I   

 

        yyzzx
22

xyzzxxyy MI  r - qp + I r - p + I  qr +  p  - rp I - I + q  I 
 

        zyzzxxy
22

xxyyzz MI  rpq - I  p - rq + I p - q  + pq I - I + r  I   (3.26)
 

Adding the added mass terms described in Section 6.2.1.3 to the left hand side and 
rewriting in matrix form, these equations can be written as: 
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 (3.27)
where, 

 
][sin'1 rvqwmWFrhs x    

][sincos'2 pwrumWFrhs y    

][sincos'3 qupvmWFrhs z    

   yzzxxyyyzzx IqrpqIprIqrIIMrhs )' 22
4   

   yzzxxyzzxxy qpIIrpqrIrpIIMrhs  )' 22
5  

    yzzxxyxxyyz rpIrqIIpqpqIIMrhs  22
6 '  
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F' and M' are now the total forces and moments not including the weight of the ship and the 
force contribution from the added mass terms.  F' and M' are computed by summing the 
component forces described in Section 6 according to Equation (6.2).  The total added mass 
force contribution is now included on the left hand side by the Aij’ terms.   After computing the 
accelerations in the ship-fixed frame ),,,,,( rqpwvu  , the procedure for integrating the 
accelerations to compute the velocities and integrating the velocities to compute the ship 
trajectory is identical to that listed in the previous section.  

4 Linear Wave Environment for Tempest 

4.1 Introduction 
This section details the theory for computing the wave elevation, pressures, and kinematics 

for a linear seaway to be used in the Tempest dynamic stability and seakeeping simulation code.  
The kinematics for a linear regular (sine) wave travelling in an arbitrary direction in infinite and 
finite depth water are presented.  The definition for an irregular sea is built upon these 
kinematics and includes both long-crested (unidirectional) and short-crested (directional spread) 
seaways.  The formulations for several theoretical spectra are included.  Specifications for input 
and output parameters follow the development of the theory. 

4.2 Coordinate System 
The coordinate system used to describe the wave field is an earth-fixed coordinate system 

defined by a right hand rule with Z positive up.  Z is equal to zero on the calm water line.  A 
wave direction of  = 0 means that a wave progresses along the X-axis. 

4.3 Relationships for Infinite Depth Linear Regular Waves 
Wave Number: 

  (4.1)

 Wave Length: 

  (4.2)

Frequency: 

  (4.3)

Wave Celerity (Phase Velocity): 

  (4.4)

Group Velocity: 

  (4.5)
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4.4 Relationships for Finite Depth Linear Regular Waves 
Wave Number: 

     (4.6)

Wave Length: 

  (4.7)

Frequency: 

  (4.8)

Wave Celerity (Phase Velocity): 

  (4.9)

Group Velocity: 

  (4.10)

 

 

4.5 Regular-Linear-Wave Velocity Potential and Kinematics 
The 3D velocity potential of a regular wave traveling in an arbitrary direction in finite and 

infinite depth is presented in the following sections.  One can easily reduce these equations to a 
2D wave by setting the wave direction, , to 0. 

4.6 3D Velocity Potential and Kinematics for a Single Wave – Infinite-
Depth 

Velocity Potential: 
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Wave Elevation: 
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Hydrostatic Pressure: 

Zgphys     (4.14)

Dynamic Pressure: 
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Particle Orbital Velocity Components: 
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Particle Acceleration Components: 
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4.7 3D Velocity Potential and Kinematics for a Single Wave – Finite 
Depth 

Velocity Potential: 
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Real Part of the Velocity Potential: 
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Wave Elevation: 
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Hydrostatic Pressure: 

(4.21)

Dynamic Pressure: 
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Particle Orbital Velocity Components: 
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Particle Acceleration Components: 
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Note that the finite-depth dispersion relation is different than the infinite-depth case and 
one cannot substitute k = 2/g when deriving/defining the kinematics for the finite-depth case. 

4.8 Pressure Stretching 
Linear wave theory has a deficiency in that the total pressure (dynamic plus hydrostatic) 

does not approach zero as the free surface is approached from below.  There are several methods 
to deal with this issue that modify the dynamic pressure, orbital velocity, and acceleration 
components. 

Wheeler's Method for stretching can be written as a modification to Z in the dynamic 
pressure and orbital velocity equations.  The value Z' is computed and used in place of Z to 
compute the dynamic pressure, particle velocities, and particle accelerations.  The hydrostatic 
pressure is not stretched and uses Z, not Z'. 

Zgρ=phys 
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In the case of irregular waves,  in the above equation is the total free surface elevation 
comprised of all wave components from all seaways present in the simulation. 

4.9 Irregular Wave Kinematics – Linear Model 
Irregular waves are computed by assuming a power spectrum for a seaway.  From the 

spectrum, individual wave components are generated.  The characteristics of these wave 
components are summed to compute the total wave characteristics. 

4.10 Long-Crested Infinite Depth Irregular Seaway Kinematics 
An irregular seaway is modeled as a superposition of regular, sinusoidal waves, as defined 

in previous sections.  The amplitudes of the wave components that compose the irregular seaway 
are derived from a power spectrum, S(), which can be derived from measurements or 
theoretical spectra (which are defined in a subsequent section). 

The amplitudes for the wave components are derived from a discretized power spectrum 
and are computed as follows: 

  (4.26)

The wave elevation at an arbitrary location is the computed as: 

(4.27)

The phase angles (i) for each of the wave components are random numbers which are 
uniformly distributed between (-π,π) and drawn independently for each frequency ωi. 

The hydrostatic pressure is computed as: 

(4.28)

The dynamic pressure is computed as: 

  (4.29)

 
The total orbital velocity vector is given by: 

  (4.30)

The total orbital acceleration vector is given by 

  (4.31)
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4.11   Short-Crested Irregular Seaway Kinematics 
The kinematics for a short crested irregular seaway are computed in a similar manner to a 

long-crested seaway.  A spreading function, G(), is introduced in order to distribute the energy 
of each wave frequency over several directions.  Two common spreading functions are the 
cosine squared and cosine to fourth functions.  

Definition of parameters in spreading function 
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(4.32)

Cosine Squared Spreading Function: 

  

(4.33)

Cosine to the Fourth Spreading Function: 

   

(4.34)

The spectral density then becomes: 

  (4.35)

The amplitude for the wave components is given by: 

  (4.36)

The wave elevation at an arbitrary location is the computed as: 

(4.37)

 
The hydrostatic pressure is computed as: 

(4.38)

 
The dynamic pressure is computed as: 
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  (4.39)

 
The total orbital velocity vector is given by: 

  (4.40)

The total orbital acceleration vector is given by: 

 (4.41)

 

4.12   Discretization of Spectra 
The frequencies of the discretized spectrum may have equal or unequal spacing between 

them.  In the case of unequal spacing, the frequencies are selected so that the area of each slice of 
the spectrum (S(i)· iis constant.  This yields wave component amplitudes that are constant 
across frequencies for a given wave direction .   

The spectra are truncated so that wave components with infinitesimal amplitudes or 
extremely high frequencies are excluded, as they do not contribute significantly to the overall 
result and add computational burden.  The truncation limits are set so that significant wave 
height computed from the area under the discretized spectrum is less than 0.5%.  A lower 
truncation limit, llim, of 0.6·m and an upper truncation limit, ulim, of 4.0·m are appropriate for 
all spectra defined in the Theoretical Spectra section. 

4.13   Theoretical Spectra 
There are several commonly used theoretical spectra that are useful in engineering analysis.  

The most widely used spectra for ship design evaluations are Bretschneider, JONSWAP, and 
Pierson-Moskowitz.   

4.13.1 Pierson-Moskowitz – Input Hs only 
Spectral definition: 

  (4.42)

Modal period: 

  (4.43)

 

4.13.2 Bretschneider – Input Hs and m 
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  (4.44)

4.13.3 JONSWAP – Input Hs and m 

Spectral definition: 
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4.13.4 Ochi Hubble Six Parameter Spectrum and other Bimodal 
Spectra 

Wave spectra obtained from measured data in the ocean often have double peaks (bimodal 
frequencies).  The Ochi Hubble 6-Parameter spectral formulation as described in Ochi and 
Hubble (1976) is actually the sum of two three-parameter spectra, which in general can represent 
a spectrum with two peaks.  The six input parameters are the modal frequency m, significant 
wave height Hs, and peaking factor  for each of the two spectra.  Note that Ochi and Hubble 
(1976) use the symbol  for the peaking factor instead of  Since  is used for wavelength we 
have used , which is consistent with the symbol used for a peaking factor in the JONSWAP 
spectra.  The spectral definition is: 

  
(4.47)

where  is the Gamma function.  The total significant wave height for the Ochi Hubble Spectrum 
is: 

  (4.48)

Each of the two spectra making up the total spectrum reduces to the Bretschneider spectrum 
when j = 1, since ) = 1. 

The Ochi Hubble six parameter spectrum is a common type of bimodal spectrum.  Bimodal 
spectra can also be formed by summing any two single peak spectra; for example, a two peak 
JONSWAP spectrum could be formed as the sum of two JONSWAP spectra with different 
modal frequencies.  Bimodal spectra can be used to represent a combination of a wind driven sea 
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and a swell.  Swell, which is composed of waves generated from an old storm traveling across 
the ocean, typically consists of long-crested waves with longer wave periods.  The direction of 
the swell may be different than that of the wind driven sea.  For the case of a bimodal spectrum 
composed of a wind driven sea and a swell, the two spectra forming the total spectrum may each 
have a separate primary wave direction, 0, as well as a different spreading function G().  

During the original storm large that creates swell conditions, wind driven waves are 
generated with the wave spectrum that probably resembles a fully developed Pierson-Moskowitz 
spectrum, consisting of many waves over a wide period range. As the waves travel away from 
the center of the storm, the longer waves will travel faster than the shorter waves, and several 
hundred miles from the location of the original storm the waves will have separated into groups 
with different wavelengths (note that wavelength is directly proportional to wave period). All of 
the waves will decrease in amplitude as they travel out of the storm area into areas with less 
wind, but the longer waves will retain more energy, and most of the shorter waves (periods < 12 
seconds) will decay completely and die out within a few hundred miles of the original storm. The 
remaining longer waves will appear as a nearly long-crested, uniform wave train, which is what 
is referred to as swell. An observer a thousand miles or more from the original storm location 
will first see waves of smaller amplitude with longer periods of around 20 seconds. These are the 
waves from the low frequency end of the original storm wave spectrum that travel the fastest and 
reach the observer first.  Over time the amplitude of the swell will increase and the period will 
decrease. For a typical swell the most wave energy is usually contained in waves with a 15-17 
second period, corresponding roughly to the modal period of the original storm.  As the period 
continues to decrease past 14 seconds the swell amplitude will likely decrease and the swell will 
eventually fade away. 

4.14   Spectral Moments 
The nth moment of a seaway spectrum is calculated as follows: 

  (4.49)

The spectral moments are useful in the calculation of several parameters related to the seaway.  
If a narrow-banded, stationary, Gaussian process with zero mean is assumed, then the significant 
wave height is given by: 

  (4.50)

 
The average period of the seaway is given by: 

  (4.51)

 
 
 
The zero-crossing period of the seaway is given by: 

 



0

dωωSω=m n
n

04 m=H s 

1

02
m

m
π=TAvg 



 

32 

  (4.52)

4.15   3rd Order Stokes’ Wave – Infinite-Depth  
The equations listed in the previous sections apply to linear waves.  In this section the 

equations for a monochromatic 2nd and 3rd order Stokes’ wave in infinite water depth will be 
presented.  Stokes’ waves are based on nonlinear solutions for plane progressive waves derived 
from power series expansions in the wave amplitude.  Stokes’ waves of varying orders can be 
derived by retaining more terms in the expansion.   

For a 2nd and 3rd order Stokes’ wave in deep water, the dispersion relation becomes: 

 

     (4.53)

where wave number is defined as: 

     (4.54)

Note that many of the simple relationships between the wavelength and the wave frequency 
that are valid for linear waves (Eqns. ((4.1)- (4.4)) were derived from the simpler linear 
dispersion relation, and cannot be used for higher order Stokes’ waves.  The relationships shown 
in Equations (4.54) through (4.56) are valid for a monochromatic Stokes' wave of any order. 

Frequency: 

 (4.55)

Wave Celerity (Phase Velocity): 

  (4.56)

 
If the wavelength or wave number is specified, the wave frequency and period can be 

computed from Eqns. ((4.53)-(4.55)).  If the frequency or period is specified, Eqn. (4.53) must be 
solved to obtain the wave number.  This equation has two complex roots and only one purely real 
root.  The solution for the wave number, k, for a specified frequency is: 

  

where,                             
(4.57)

 
When the nonlinear dispersion relation, Eqn. (4.53), is used in place of the linear dispersion 

relation, the linear equations for the velocity potential, Eqns. (4.11) and (4.12), are accurate up to 
and including terms of order (ka)3.  

In order to simplify the equations, the following substitution will be made: 
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Θ = ωt – kX cos(β) – kY sin(β) + ε   (4.58)
 

The wave elevation for a 2nd order Stokes' wave is: 

  (4.59)

The wave elevation for a 3rd order Stokes' wave is: 

  (4.60)

For linear and 2nd order Stokes' waves, the peak to trough wave height, H, is equal to 2A.  
For a 3rd order Stokes' wave, the wave height is expressed as: 

32

4

3
2 akaH    (4.61)

Note that for anything other than linear waves, the amplitude, A, no longer relates to a 
physical dimension, such as the distance from the mean water level to the peak or trough. 

Since the velocity potential used for the linear wave is valid through third order when the 
wave number and frequency satisfy the nonlinear dispersion relation in Eqn. (4.53), the wave 
orbital velocity can be obtained by differentiating the formula for the velocity potential.  The 
equations in (4.16) use the linear dispersion relation and are valid only for linear calculations.  
The correct equations for the orbital velocity accurate up to and including terms of order (ka)3 

are given in Equations (4.62) below: 
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The pressure at any point under the wave can be computed from the Bernoulli Equation.  In 

deriving the first order equation for dynamic pressure, Eqn. (4.15), the term in the Bernoulli 
Equation was not included as this was of the order (ka)2.  For 2nd and 3rd order Stokes' waves 
this term must be retained.  The total incident wave pressure for a 2nd and 3rd order Stokes' 
wave, including both the hydrostatic and dynamic components is:  
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The total pressure specified by the above equation approaches zero at the water surface, so 

it is not necessary to apply the pressure stretching used in the linear wave theory.  Since the 
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formulae for the velocity potential of a monochromatic 2nd and 3rd order Stokes' wave are 
identical, and do not include terms of O(ka)2 or higher, the expressions for the wave orbital 
velocity and pressure  given in Equations (4.62) and (4.63) are the same for both 2nd and 3rd 
order Stokes' waves.   Only the expressions for wave elevation are different between the 2nd and 
3rd order Stokes' waves. 

4.16   Inputs and Defaults 
Tempest should be able to use an arbitrary number of linear seaways.  There are three ways 

to specify the input parameters for a seaway and each seaway should be able to use a different 
method.  The input methods and their associated options are: 

 Regular wave inputs 
◦ Required:  

▪ Wave amplitude: A 
▪ Either period, length or frequency: T, λ, or ω 

◦ Optional:  
▪ ε default: 0 deg 
▪ Order of Stokes' wave –  default: linear 

 Selection of a theoretical spectrum 
◦ Required: Spectrum type, Hs, Tm, N 
◦ Optional:  

▪  default: 0 deg 
▪ llim  default: 0.6· m 

▪ ulim  default: 4.0· m 

▪ r(random seed for automatically selected phase angles) – default: random 
▪ Pressure stretching flag – default: use pressure stretching 
▪ Frequency spacing method – default: constant area 

 Options are constant  or constant area 
▪ Spreading function – default: no spreading 

 Spreading function type – default: cosine squared 
 A – default: 90 degrees 
 N – default: 5 (not including end points of spreading function – they are 

0) 
 Input of spectral ordinates 

◦ Required: iS(i) 
◦ Optional:  

▪ i– default: 0 deg 
▪ i– default: random 

 mutually exclusive with r
▪ r– default: random 

 mutually exclusive with i 

▪ Pressure stretching flag – default: use pressure stretching 
 Input of wave components 

◦ Required: i, ai 
◦ Optional:  
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▪ i– default: 0 deg 
▪ i– default: random 

 mutually exclusive with r
▪ r– default: random 

 mutually exclusive with i 

▪ Pressure stretching flag – default: use pressure stretching 

4.17   Intermediate Output 
Tempest shall report, in some manner, Hs computed from the discretized spectrum.  The 

graphical Tempest client shall have the ability to display an autocorrelation function for the 
discretized spectrum computed by a discrete cosine transform of the spectrum. 

5 Autopilot Control 
Tempest Level-0 will include a simple PID control algorithm to control the rudder 

deflection and propeller RPM.  The rudder control algorithm will be set up to deflect the rudder 
in an unsteady manner to maintain a constant heading angle specified by the user.  In the Level-0 
theory, the propeller RPM is assumed to be constant, but a PID control algorithm is included for 
the propeller to help compute the propeller RPM required to achieve a desired speed in calm 
water.   

The PID controller for the rudder requires the following user-supplied inputs: 

 D – desired heading angle 

 Gp – gain coefficient for proportional term 

 Gi – gain coefficient for integral term 

 Gd – gain coefficient for derivative term 

 max – maximum rudder deflection angle 

  – rudder slew rate 

 PB – Proportional band of controller 

 Imax – upper limit on the amplitude of the integral error 

 

The commanded rudder deflection angle at time t is computed as: 

    
t

dDiDpc GdGG
00 )(     , (5.1) 

where   is the time derivative of the ship heading, which is computed using finite differencing 
of the ship heading angle at the current and previous time step.  The integral gain term above is 
limited by the user-supplied value, Imax: 

  max0
)( Id

t

D     . (5.2) 
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To compute the actual rudder deflection angle at each time step, it is assumed that the rudder 
servo is a linear first-order lag with slew rate,  , and proportional band, PB.  The actual rudder 
deflection is then computed as: 

 0 01 exp c
B

t

P

   
  
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
  , (5.3) 

 
where 0 is the rudder angle at the beginning of the time step and the second term is the 
increment of the rudder angle. The increment is limited by the rudder slew rate: 

 0c

t

 






   , (5.4) 

and the total rudder deflection is limited by the maximum rudder angle, max: 

max    . (5.5) 

6 Forces 
Tempest requires the total force and moment vector to be computed at each time step in 

order to solve the equations of motion for the ship.  In the Level-0 theory the forces and 
moments are referenced to the center of gravity of the ship.  In this document, the term “forces” 
will hereafter be assumed to include both forces and moments.  In Tempest it will be assumed 
that the total force can be decomposed into various force contributions, and the total forces on 
the hull can therefore be obtained by summing the various force contributions.  In the Level-0 
theory, the following force contributions will be considered: 

 Hydrostatic forces – Fhys 

 Froude-Krylov forces – FFK 

 Radiation forces – Frad 

 Diffraction forces – Fdif 

 Hull resistance – Fresist 

 Bilge keel forces – FBK 

 Bare hull maneuvering forces (includes skeg force) – Fman 

 Rudder and fin forces – FR 

 Propulsion forces – FP 

 Weight of ship – W 

The force from the weight of the ship is described along with the equations of motion in 
Section 3.3.  The remaining force components are discussed in Sections 6.1 through 6.7.  As the 
total force is computed as the linear superposition of component forces, special care is taken to 
avoid either missing important force components or the double counting forces.  An example of 
double counting forces would be low frequency radiation forces and maneuvering forces.  
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Another example would be computing and including the rudder force when the hull maneuvering 
force is based on empirical data that includes the rudder force already.  The areas where double 
counting of forces is a concern and how double counting is avoided is discussed in the sections 
describing each force component. 

The total force in the ship-fixed reference frame acting on the ship at the center of gravity 
of the ship is the sum of the component forces. 

WFFFFFFFFFF PRmanBKresistdifradFKhystotal


  (6.1) 

Note that in the Level-0 equations of motion the weight of the ship is already accounted for 
and the added mass terms in the radiation force are moved to the left hand side.  Therefore the 
force vector used to form the right hand side of the equations of motion described by Equation 
(3.27) is computed as:  

WFFFFFFFFFF PRmanBKresistdifdampingradFKhysRHS


 _  (6.2) 

The terms forming the right hand side of Equation (6.2) are defined by Equations (6.3), 
(6.16), (6.23), (6.28), (14b), (6.72), (6.103) and (6.123). 

6.1 Hydrostatic and Froude-Krylov Force 
The hydrostatic pressure force on the hull is computed by integrating the hydrostatic 

pressure over the wetted hull surface.  The Froude-Krylov force is computed by integrating the 
dynamic wave pressure over the wetted hull surface.  In both cases the wetted hull surface is 
defined as the hull surface below the incident wave surface.  In other words, the diffracted wave 
is not considered in computing the hydrostatic or Froude-Krylov force on the hull in the Level-0 
theory.  The combined hydrostatic Froude-Krylov force is the integration over the ship’s surface 
of the total pressure that would exist in the incident wave field in the absence of the ship.   

In Tempest, the ship hull geometry will be described as a meshed surface defined by the 
vertices that define the mesh.  The first step is to compute the total wave height near the ship in 
order to determine which vertices are wet and which are dry.  The total wave height at any 
location at an instant in time can be computed from Equation (4.27).  By computing the total 
wave height at each vertex in the mesh, the intersection of the incident wave surface with the 
ship hull can be determined.  The next step is to compute the hydrostatic pressure, phys, and the 
dynamic wave pressure, pD, at each vertex at the current time step.  The hydrostatic pressure at 
any point is computed using Eqn. (4.28).  The dynamic pressure at any point at a given instance 
in time is computed using Eqn. (4.29).  When computing the dynamic pressure, Wheeler’s 
method of pressure stretching is applied as described in Section 4.8 to ensure that the total 
pressure on the water surface goes to zero.  The combined hydrostatic and Froude-Krylov force 
is then computed as the integral of the hydrostatic and Froude-Krylov pressures over the wetted 
hull surface. 

 
wet

hys FK hys DS
F p p dS    (6.3) 

The integral shown in Equation (6.3) is evaluated numerically using the meshed hull 
surface and the values of the hydrostatic and dynamic pressure computed at each vertex.  
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6.2 Hydrodynamic Perturbation Force 
The total force acting on the ship will be computed by linear superposition of force 

contributions from various sources.    The hydrodynamic perturbation forces are decomposed 
into radiation forces and wave exciting forces.  The radiation forces represent the forces due to 
the oscillating motion of the ship in calm water.  The wave exciting forces are further broken 
down into the Froude-Krylov forces and the diffraction forces.  The Froude-Krylov forces, which 
are described in Section 6.1, are the component of the wave exciting force resulting from the 
integration over the ship’s surface of the incident wave pressure field that would exist in the 
absence of the ship.  The diffraction forces represent the force due to the diffraction of the 
incident wave due to the presence of the ship. 

6.2.1 Radiation Force 

6.2.1.1 Summary of Theory 
This section describes the theory for computing the radiation forces in the Level-0 

implementation of the time domain dynamic stability code Tempest.  The Level-0 Tempest is 
intended to be a code based on simple theories that will provide an initial framework into which 
more accurate theories can be implemented.   In the Level-0 theory, the radiation force at each 
time step will be computed from the added mass and damping coefficients interpolated at the 
instantaneous encounter frequency, and the “memory” force relating to the radiation force will be 
ignored. 

The total force acting on the ship will be computed by linear superposition of the forces 
contributed from various sources.  The seakeeping forces are decomposed into radiation forces 
and wave exciting forces.  The radiation forces represent the forces acting on the ship as it 
undergoes prescribed oscillatory motions in calm water.  The radiation forces are further 
decomposed by examining the oscillatory motion in each of the six degrees of freedom 
separately.    For steady-state oscillatory motion at a single frequency, the hydrodynamic 
radiation force acting on the ship can be expressed as: 
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ti
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where, 
j is the complex amplitude of the oscillation in the jth mode, and Tij is the complex 

transfer function which represents the force in the ith direction due to a unit amplitude oscillation 
in the jth mode, which can be decomposed  into its real and imaginary parts: 

ijijij BiAT   2  (6.5) 

where Aij and Bij are real coefficients with Aij being the added mass in the ith mode due to unit 
acceleration in the jth direction and Bij being the damping coefficient in the ith mode due to unit 
velocity in the jth direction.  The coefficients Aij and Bij are in general dependent upon the 
frequency of oscillation and the forward speed of the ship. 

As the ship undergoes forced oscillation it will generate waves that will radiate outwards 
on the free surface.  When the oscillatory motion is unsteady or has not reached steady state, the 
presence of the non-uniform radiated waves on the free surface results in a time dependent 
radiation force. This radiation force depends on the previous motion history of the ship, as the 
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waves produced by the ship will continue to influence the pressure in the fluid and consequently 
the force on the ship, as they radiate away.  When the solution is computed in the time domain, 
this “memory” force is represented by the convolution integral in the formula below. 
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The convolution in the above equation can be expressed in terms of either the velocities 
jx  

or the accelerations
jx : 
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where the impulse response functions used for the kernels are related to each other by 
differentiation: 
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The impulse response functions can be computed from the frequency domain added mass 
and damping coefficients by Fourier sine or cosine transforms as: 
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In the Level-0 implementation of Tempest the “memory” force term in Equation (6.6) will 
be ignored.  The user will input values for Aij and Bij over a range of frequencies at zero speed.  
The code will then interpolate to determine the values of Aij and Bij corresponding to the 
encounter frequency based on a time averaged value of the ship speed, the instantaneous 
heading, and the modal frequency of the incident wave spectrum.  Setting the “memory” force to 
zero is equivalent to assuming that the added mass and damping coefficients do not vary with 
frequency.  Based on this assumption, 0)()(  AAij   and 0)()(  BBij  , the memory 

force term in the expression for the radiation force will be zero.  In the simplified Level-0 theory, 
the expression for the radiation force becomes: 
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where Aij
* and Bij

* are the values of Aij() and Bij() interpolated at the encounter frequency.    

In the linear hydrodynamic theory used for Level-0, the added mass and damping 
coefficients, Aij and Bij, are computed with the ship in an upright position on the calm free 
surface, with the assumption that the motions are small.  This results in a paradox when applied 
to cases where the ship motions result in large pitch and/or roll angles.  Consider a case where 
the ship roll angle is close to 90° and the ship is forced to oscillate in the ship-fixed z-direction.  
In this case the ship is “heaving” with respect to the ship-fixed axis system but “swaying” with 
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respect to the upright axis system.  If A33 and B33 are used to compute the force in ship-fixed z-
direction, the force will be based on calculations made with an upright ship oscillating vertically 
on the free surface.  If A22 and B22 are used, the force will be based on calculations made with the 
upright ship oscillating horizontally on the free surface.  When applying linear theory to a case 
with a large pitch and/or roll angle, a choice must be made whether to use coefficients computed 
with approximately the correct geometry, but with the incorrect motion relative to the free 
surface, or to use coefficients computed with an incorrect geometry, but with the correct motion 
relative to the free surface.  For consistency with the ship-fixed mass matrix, the Aij and Bij 
tensors are transformed from the upright coordinate system (yawed earth-fixed) to a ship-fixed 
coordinate system, which is applied in the Level-0 implementation of Tempest. 

6.2.1.2 Input 
The user will provide a set of added mass and damping coefficients for the ship at zero 

speed.  Only the non-zero coefficients listed at the end of this section will be provided, and these 
will be provided over a sufficient range of frequencies to allow the program to interpolate values 
at the instantaneous encounter frequency.  The transfer functions should be defined in the 
coordinate system with x forwards, y to port and z upwards with the origin at the ship center of 
gravity.  If a different origin is used to define the transfer functions, the origin location must also 
be specified as input and Tempest will perform a transformation so the moments are referenced 
to the center of gravity.  A wave frequency corresponding to the modal period will also be 
specified for computing the encounter frequency.  The Level-0 theory will assume that the ship is 
symmetric port and starboard.  With this assumption the motions and forces in the lateral plane 
and vertical plane can be considered separately, and any term with one odd index and one even 
index will be zero. 

A12
0 = A14

0 = A16
0 = A21

0 = A23
0 = A25

0 = A32
0 = A34

0 = A36
0 = 0 

A41
0 = A43

0 = A45
0 = A52

0 = A54
0 = A56

0 = A61
0 = A63

0 = A65
0 = 0 

 
B12

0 = B14
0 = B16

0 = B21
0 = B23

0 = B25
0 = B32

0 = B34
0 = B36

0 = 0 
B41

0 = B43
0 = B45

0 = B52
0 = B54

0 = B56
0 = B61

0 = B63
0 = B65

0 = 0 

(6.11)

 
The “0” superscript is used to indicate zero speed.   At zero speed, the added mass and damping 
tensors are symmetric:  

00
jiij AA  , 

00
jiij BB  .   (6.12)

This results in only 12 unique non-zero added mass and damping coefficients that the user must 
provide as input.   These coefficients can be obtained from either a strip theory code or from a 
panel method such as WAMIT.  In order to interpolate values of each coefficient at the encounter 
frequency, the user will need to compute the values over a range of frequencies covering the 
range of expected encounter frequencies.  The coefficients should be provided as dimensional 
values with the units as specified in Table 6-1: 
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Table 6-1 Units for Added Mass and Damping Coefficients 

i j Units for Aij Units for Bij 
1,2,3 1,2,3 kg kg/sec 
1,2,3 4,5,6 kg m kg m/sec 
4,5,6 1,2,3 kg m kg m/sec 
4,5,6 4,5,6 kg m2 kg m2/sec 

 

The following is a list of the 3-D, zero-speed added mass and damping coefficients that the 
user will provide as input: 

A11
0, A13

0, A15
0, A22

0, A24
0, A26

0, A33
0, A35

0, A44
0, A46

0, A55
0, A66

0 

B11
0, B13

0, B15
0, B22

0, B24
0, B26

0, B33
0, B35

0, B44
0, B46

0, B55
0, B66

0 

 

6.2.1.3 Implementation 
The zero speed added mass and damping coefficients will be provided over a range of 

frequencies as input to the program.  At each time step the program will interpolate each Aij and 
Bij coefficient to obtain a value corresponding to the encounter frequency based on the modal 
frequency of the incident wave.  The interpolated values will then be corrected to account for the 
forward speed of the ship.  In calm water, the zero frequency value of Aij should be used and Bij 
should be set to zero.  No forward speed correction is applied to Aij in calm water.   

The Aij and Bij coefficient matrices are transformed from an upright coordinate system to the 
ship-fixed coordinate system.  The added mass terms will be applied to the left hand side of the 
equations of motion as described in Section 3.5.  The force from the damping terms will be 
computed and added as a component of the forces included on the right hand side of the 
equations of motion. 

The formulae used to correct the added mass and damping coefficients for forward speed 
were taken from Principles of Naval Architecture (PNA 1989).   These formulae are derived 
from the strip theory outlined in Salvensen, Tuck, and Faltinsen (1970).  The formulae in PNA 
are modified from those in the original Salvensen et. al. (1970) work, in that the original theory 
included transom stern corrections that have been omitted and the original work did not include 
the surge degree of freedom, which has been added.  The following terms do not have forward 
speed corrections and will be set to their zero speed values: 

A13 = A31= A13
0 

B13 = B31= B13
0 

A24 = A42= A24
0 

B24 = B42= B24
0 

A11= A11
0
 

B11= B11
0
 

A22= A22
0
 

B22= B22
0
 

A33= A33
0
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B33= B33
0
 

A44= A44
0
 

B44= B44
0
 

 

The remaining terms will be corrected to account for forward speed using the formulae 
listed in Table 6-2 below: 

 

Table 6-2  Forward speed corrections for added mass and damping coefficients. 

Vertical Plane Lateral Plane 
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U0 is the mean forward speed of the ship.  In Tempest (Level-0) U0 will be computed as the 
running average of the instantaneous velocity of the ship along the ship-fixed x-axis over an 
interval of time before the current time step.  The size of the time interval used for the averaging 
will be an optional user input, and the default size of the time interval will be 15 seconds.  e is 
the encounter frequency, which is computed using the formula below: 

 cos0

2

U
ge   (6.13)

The value of  used to compute the encounter frequency will be the frequency of the 
incident wave if a regular wave is specified and the modal frequency if an irregular wave 
spectrum is specified.   The angle  is the heading angle.  It will be computed in Tempest at each 
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time step as the angle between the ship-fixed x-axis and the primary direction of the waves, with 
180° corresponding to head seas and 0° to following seas.   In calm water cases, the encounter 
frequency should be set to zero and the forward speed corrections should not be included.  Also 
in calm water the damping terms, Bij, should all be set to zero. 

The code will then transform the added mass and damping terms from an upright system to 
a ship-fixed system.   The transformation matrix for converting from the yawed upright system to 
the ship-fixed system is: 
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where   is the roll angle and   is the pitch angle, as defined in Section 3.2.  In order to rotate 
the 6 x 6 added mass and damping matrices, each 3 x 3 quadrant of the matrix is transformed 
separately as follows: 
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(6.15)

Note that prime notation is used in the case of the added mass and damping coefficients to 
denote values in the ship-fixed coordinate system.  Throughout this document, prime notation 
generally refers to the yawed upright frame of reference.  However, the user supplied-
coefficients, Aij and Bij, calculated in the yawed upright frame are conventionally referenced 
without prime notation.  This inconsistency in notation in this document is a result of 
maintaining conventional notation for the initially-calculated added mass and damping 
coefficients. 

After transforming the matrices for both the added mass and damping coefficients, the 
transformed 6x6 added mass matrix will be added to the left hand side of the equations of motion 
in place of the infinite frequency added mass terms discussed in Section 3.5.   The radiation 
forces due to the damping will be computed using the equation listed below and added to forces 
composing the right hand side of the equations of motion. 
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where, jx  is the mean velocity in the jth direction.  The values for jx will be computed as the 

running average of the velocity vector over the time interval before the current time step.  The 
length of the time interval will be the same used to compute U0, and 1x  will be equal to U0.  At 
the start of the simulation the averaging will take place from t = 0 seconds to the current time, 
until the total simulation time exceeds the length of the specified time integral. 

If it is desired to list the total ship-fixed radiation force as an output at each time step, this 
can be computed with the following equation: 
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6.2.2 Diffraction Force 

6.2.2.1 Summary of Theory 
This section describes the theory for computing the diffraction forces in the Level-0 

implementation of the time domain dynamic stability code Tempest.  The Level-0 Tempest is 
intended to be a code-based on simple theories that will provide an initial framework into which 
more accurate theories can be implemented. 

The diffraction force in the Level-0 Tempest code will be calculated from a set of pre-
computed complex transfer functions.  The transfer functions will be provided for a range of 
wave frequencies and heading angles.  The transfer functions are also dependent on the speed of 
the ship.  The influence of forward speed will be included either through the user supplying a set 
of transfer functions for several speeds and interpolating to determine coefficients at the 
instantaneous speed at each time step, or by applying forward speed corrections to coefficients 
supplied by the user only at zero speed.  The real part of the complex transfer function represents 
the component of the force that is in phase with the wave, while the imaginary part of the 
complex transfer function represents out of phase component.  It is assumed that the waves are 
defined as the linear superposition of long-crested waves traveling in the direction of the earth-
fixed X-axis.  The incident wave height at the center of gravity of the ship is then defined by the 
expression: 
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where there are N wave components.  n, kn, n, n are, respectively, the frequency, wave 
number, phase and  amplitude of wave component n.  Details of computing the incident wave 
height for cases where the wave components do not all travel along the earth-fixed X-axis are 
given in Section 4.11.  If a wave component is traveling at an angle β to the earth-fixed X-axis,  
(-knX) should be replaced with (-knXcosβ - knYsinβ) in all of the equations found in this section, 
where X and Y are the positions of the center of gravity of the ship with respect to the earth-fixed 
origin in the earth-fixed X-direction.   

The total diffraction force in the ith direction will be the sum of the diffraction force 
contributions from each wave component defining the wave system. 
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The complex diffraction transfer function for the force in the ith direction is expressed as a 
function of frequency and heading angle: 
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In the linear seakeeping theory used for Level-0, the diffraction force transfer function 
coefficients are computed with the ship in an upright position on the mean free surface, with the 
assumption that the wave amplitudes are small.  The resulting forces will be computed in a 
yawed upright coordinate system with origin at the center of gravity.  These forces must be 
transformed to the ship-fixed coordinate system with origin at the center of gravity before they 
are added to the other component forces.   

6.2.2.2 Input 
The user will provide a set of diffraction force complex transfer function coefficients 

computed for the ship either at zero speed or for a range of speeds.  The set of transfer functions 
must cover a full range of headings and wave frequencies.  The transfer functions should provide 
forces and moments about an origin at the center of gravity of the ship.  The transfer function 
coefficients should be provided as dimensional values with the units specified in Table 6-3: 

Table 6-3 Units for Diffraction Transfer Functions 

i Units for FD
i 

1,2,3 N/m 
4,5,6 N m/ m 

 

The transfer functions should be defined in the coordinate system with x forwards, y to 
port, and z upwards with the origin at the ship center of gravity.  If a different origin is used to 
define the transfer functions, the origin location will be specified as input and Tempest will 
perform a transformation so the moments are referenced to the center of gravity.  

6.2.2.3 Implementation 
The diffraction force coefficients will be interpolated twice to obtain transfer functions at 

the current wave heading for each wave frequency used to make up the incident wave spectrum.  
The first interpolation will be to obtain a set of transfer functions at each of the wave frequencies 
used by the incident wave spectrum.  The set of interpolated transfer functions will be a function 
of the input wave heading angles.  Since the wave frequencies of the component waves forming 
the wave spectrum are constant, this first interpolation can be performed prior to the start of the 
time stepping procedure, with the interpolated values being stored and used at each time step.  
The second interpolation will be performed at each time step.  The second interpolation will 
derive the transfer function at the current wave heading angle at every wave frequency used in 
the wave spectrum. 

After the interpolation, the diffraction transfer functions will be corrected to account for the 
forward speed of the ship.   The formulae used to correct the complex diffraction transfer 
functions for forward speed follow the formulae used in SMP and as described in Appendix B of 
Meyers, et. al. (1981).   Forward speed corrections are only applied to the pitch and yaw moment 
coefficients:  

0
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DD FF   
0
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0
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0
44
DD FF   
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U0 is the mean forward speed of the ship.  In Tempest Level-0 it will be set to the the 

running average of the instantaneous velocity of the ship along the ship-fixed x-axis.  e is the 
encounter frequency, which is computed using the formula below: 

 cos0

2

U
ge   (6.22)

The value of e will be computed separately for each component wave frequency in the 
wave spectrum.   The angle  is the heading angle.  It will be computed in Tempest at each time 
step as the angle between the ship-fixed x-axis and the primary direction of the waves, with 180° 
corresponding to head seas and 0° to following seas.  

Alternatively, the user may input coefficients for both the radiation and diffraction forces at 
several speeds.  Coefficients including forward speed can be computed by programs such as 
AQWA, FD-Waveload, and Precal.  With this option the forward speed corrections will not be 
applied, but an additional interpolation will be required to determine the coefficients applicable 
to the instantaneous speed of the ship at each time step. 

After the coefficients are interpolated and corrected for forward speed, the diffraction force 
can be computed.    
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The diffraction forces and moments will then be transformed from the yawed upright 
coordinate system to the ship-fixed coordinate system.  The diffraction forces are then added to 
forces composing the right hand side of the equations of motion. 

6.3 Resistance (Axial) 

6.3.1 Summary 
This section presents a method for computing the drag force on a ship in waves (or calm 

water) to be implemented in the time domain dynamic stability code Tempest.  This method is 
appropriate for Theory Level-0 through Level-II.  The Level-III theory will capture certain 
elements (wave making drag in particular) of the method presented herein.  The last sub-section 
of will cover necessary changes when the Level-III Theory is implemented 

6.3.2 Input 
The user shall supply a curve of total resistance for the ship defined by several points.  Let 

RT be the total resistance of the ship and V be ship speed.  The total resistance coefficient, CT, is 
computed according to the following equation: 
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  (6.24)

where: 
CT = total resistance coefficient 
RT = total ship resistance 
V = ship speed in m/s 
 = water density 
SCW = wetted surface of the ship in calm water 

6.3.3 Scaling 
If the simulation is to be performed at a scale other than that for which the resistance curve 

is given, then the frictional resistance coefficient of the ship is computed at each input speed 
according the ITTC 1957 guideline as: 

 f 2

10

0.075

Log (Rn) 2
C 


 (6.25)

Where: 
 Cf = the frictional resistance coefficient 
 Rn = the Reynolds number of the ship at the input speeds 

The residuary resistance coefficient (includes all resistance components other than 
frictional) is then calculated for each input speed as: 

fR TC C C   (6.26)

A new list of Cf values is computed using Reynolds numbers based on the scaled ship 
length, rather than the input length.  A new table of CT values is then constructed using the scaled 
values of Cf and the CR values from Equation (6.26). 

6.3.4 Time Domain Calculations 
At each time step, CT is interpolated.  The velocity used in the interpolation is given by: 

INT GV U  (6.27)

where: 
VINT = the speed to use for the interpolation of CT  
UG = the axial velocity of the ship (in the ship-fixed x direction) 

The resistance at each time step is then computed by 
2

_5.0 INTIINTTresist VSCF   (6.28)

where: 
Fresist = the resistance force computed for the time step 
CT_INT = the total resistance coefficient interpolated using VINT from Equation (6.27) 
 = water density 
SI = the instantaneous wetted surface obtained from an integration of panel areas 
VINT = the instantaneous speed as defined in Equation (6.27) 
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6.3.5 Reference Frame 
The resistance (Fresist) acts in the longitudinal direction of the ship-fixed reference frame 

and is applied at the origin of the ship-fixed frame, so that no pitch moment is induced directly 
by the resistance force.   The sinkage force and trim moment acting on the ship in calm water due 
to its forward speed can be added in separately, but will not be computed using the resistance 
force vector.  The steady sinkage force and trim moment will not be included in the Level-0 
implementation but may be introduced in Level-II or Level-III.  In that case the steady sinkage 
force and trim moment will be determined by interpolation of a set of user-supplied force and 
moment coefficients similar to the coefficients CT described in the input section. The variable 
VINT will be used for the interpolation of these coefficients as well, but scale effects will be 
ignored for the sinkage force and trim moment coefficients. 

 

 

6.3.6 Extension to Level-III Theory Framework 
For the case where the wave making drag is captured by the slender body theory, the 

proposed method could be used with some minor alterations.  The user could still input the total 
resistance curve.  Some preliminary simulation runs are made at constant forward speeds and the 
wave resistance (RW) is computed followed by CW.  A residuary resistance coefficient (CR) 
excluding wave making drag is then computed as 

CR = CT – Cf - CW (6.29)

Cf is then treated as described in the previous section of this paper and CR is assumed 
constant with scale.  A resistance coefficient that shall be called the non-wave-making resistance 
coefficient (CNW) is computed as: 

CNW = CR + Cf (6.30)

And the resistance force is computed as 
25.0 INTINWresist VSCF   (6.31)

 

6.4 Bilge Keel forces 

6.4.1 Preface 
The Level-0 Tempest theory will use the Ikeda-Himeno-Tanaka (IHT) method for 

computing the roll moment from bilge keel damping (see Himeno (1981)).  The Level-0 Tempest 
will not include all of the components of roll damping described in Himeno (1981), but will only 
include the normal force bilge keel damping force and the hull pressure bilge keel damping 
force.  The wave making damping from the bilge keels is not included in this model.  Wave 
making damping from the bilge keels is typically very small and can be ignored in the Level-0 
Theory. However, if the bilge keel geometry is included in the added mass and damping 
coefficient calculations used for the radiation force model, the wave making damping from the 
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bilge keels will be captured with no double-counting of the damping terms computed in this 
section. 

The description of the method in Sections 6.4.2 through 6.4.6 is derived directly from a 
MARIN document describing work they performed for the US Navy to develop a time domain 
implementation of the IHT roll damping.  The original IHT method was developed for frequency 
domain methods.  There are several terms used in their discussion that are not defined in their 
documentation.  These will be defined here, and a brief description will also be given of the user 
supplied input needed to implement the model.  This document describes only the bilge keel 
damping portion of the IHT roll damping method.  There are also components of roll damping 
from the hull frictional, eddy making and lift damping.  Only the bilge keel damping will be 
included in the Level-0 theory for Tempest. 

Definition of terms not defined in the MARIN documentation: 

- H0(x) is the ratio of the local half beam to the local draft, H0(x) = B(x)/(2 T(x))  

- B(x) in the definition above is the local Beam at x 

- the sectional area coefficient σ is the sectional area / (B(x)∙T(x)) 

 

User supplied input 

 

The following terms will be specified at a series of stations along the length of the bilge 
keel (including the forward and aft ends of the bilge keels): 

 

B(x)  – local waterline beam at x in meters 

T(x)  – local sectional draft at x in meters 

S(x)  – sectional area of the hull section at x in square meters 

bBK(x) – bilge keel height at x in meters 

rBK(x) – distance from the center of gravity to the bilge keel in meters at x 

 

From the input variables listed above, the following two terms can be computed at each 
position along the bilge keel: 

,  

In addition to the input variables specified at positions along the length of the bilge keel, 
the following global input variables will be supplied. 

 n – natural roll frequency in radians/second. 

 LBK – overall length of the bilge keel 

In equations (6.50) and (6.54), where the roll amplitude (A) is required, a value of 10 
degrees should be used. 

)(2
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The symbols listed in the table in the Nomenclature section apply to both the FDS and IHT 
models.  There are several symbols listed in that table that are needed only for the FDS model.  
The description of the FDS model has been removed from this document, as it is based on 
proprietary MARIN experimental data. 

 

6.4.2 Introduction 
The (viscous) bilge keel damping is defined as the increment of roll damping when bilge 

keels are installed. It includes not only the roll damping of the bilge keels themselves but also all 
the interaction effects among the bilge keels, the hull and the waves.  In the IHT-formulation, the 
total bilge keel damping is defined as the sum of the normal force bilge keel damping and the 
hull pressure bilge keel damping: 

  (6.32)

6.4.3 IHT - Normal force bilge keel damping 
The normal force bilge keel damping coefficient is first calculated for each section and then 

integrated along the ship length, i.e. from the bilge keel aft end to the bilge keel fore end: 

 

(6.33)

The sectional normal force bilge keel damping coefficient consists of a zero speed part and 
a forward speed part: 

 (6.34)

  

The zero speed sectional normal force bilge keel damping coefficient is expressed as 

 

(6.35)

where  is defined and elaborated on in the appendix (for layout reasons). 

The forward speed sectional normal force bilge keel damping coefficient is expressed as 

 
(6.36)

From the above expressions, we observe that part of the zero speed sectional normal force 
bilge keel damping coefficient, , is proportional to the roll velocity; the other part 

depends on the roll amplitude only;  the forward speed sectional normal force bilge keel damping 
coefficient, , is proportional to the forward speed and does not depend on the roll 

velocity. 

These observations allow us to write in a more direct manner 
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 (6.37)

where the coefficients are given by 

 

(6.38)

  

 

(6.39)

  

 

(6.40)

6.4.4 IHT - Hull pressure bilge keel damping 
The hull pressure bilge keel damping coefficient is first calculated for each section and then 

integrated along the ship length, i.e. from the bilge keel aft end to the bilge keel fore end: 

 

(6.41)

  

The sectional hull pressure bilge keel damping coefficient is expressed as 

 
(6.42)

  

From this expression we observe that  is proportional to the roll velocity; 

therefore, we may write in a more direct manner 

 (6.43)

 

where the linear coefficient  depends on the bilge keel parameters only: 

 

(6.44)

  

, , ,0 , ,0 , ,( , ) ( )BK N BK N BK N BK N UB U p p A U      

,

,

3 2
, ,0

8
2.4 ( ) ( ) ( )

3

BK fore

BK aft

x

BK N BK BK

x

b x r x f x dx 


      
 

,

,

2 2
, ,

22.5 8
( ) ( ) ( )

3

BK fore

BK aft

x

BK N U BK BK

x

b x r x f x dx 
 

      
 

,

,

2 2
, , ( ) ( )

2

BK fore

BK aft

x

BK N U BK BK

x

b x r x dx
     

,

,

, , ( )
BK fore

BK aft

x

BK H BK N

x

B B x dx 

2 2 2
,

4
( ) ( ) ( ) ( ) ( )

3BK H BK nB x r x T x I x f x A 


       


, ,0 ( )BK HB x

, ,BK H BK HB p 

,BK H

,

,

2 2 2
,

4
( ) ( ) ( ) ( )

3

BK fore

BK aft

x

BK H BK

x

r x T x I x f x dx 


      
 



 

52 

6.4.5 IHT - Bilge keel damping – Summary (new approach) 
In the new approach the bilge keel damping is calculated as 

 (6.45)

  

where (6.38), (6.39), (6.40) and (6.44) are used.  The bilge keel damping force includes only a 
roll moment term.  Therefore, the bilge keel force vector can be expressed as: 

(0,0,0, ,0,0)BK BKF M
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 (6.46)

6.4.6 Calculation of underlying terms in IHT-method 
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(6.56)
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 (6.58)
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(6.61)

 

(6.62)

The bilge keel radius  and the distance  from the roll axis to the bilge keel are 

calculated as follows: 

 

(6.63)
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(6.65)
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6.5 Bare Hull Maneuvering forces 

6.5.1 Summary of Theory 
The maneuvering module in the Level-0 Tempest code will follow the ship specific 

maneuvering model method that is based on an Abkowitz-type, coefficient-based, maneuvering 
model (Abkowitz, 1962).  The method assumes that data is available from rotating arm tests or 
PMM tests.  The empirical coefficients used by the method are computed using the MANSIM 
program described by Kopp (2000) and Kopp (2007).  An example of this maneuvering model 
for a containership is described in Son and Nomoto (1981, 1982) which includes all of the 
empirical coefficients needed to implement the model for that ship. 

In many cases model test data from either rotating arm tests or PMM tests include rudder 
terms, while Tempest has a separate rudder model to compute the forces on the rudder.  In these 
cases, the rudder effects are embedded in all of the measured forces and moments, not just the 
specific rudder angle, , terms.  Therefore, the model test rudder terms are included in the hull 
forces calculations.  To eliminate double counting of the rudder force, the entire calm water 
“rudder” force is calculated using the procedure outlined in Section 0 (with the wave orbital 
velocities set to zero) where these forces are then subtracted from the hull maneuvering forces.  
Similarly, if the empirical data is based on model tests that included a propeller, the propeller 
side forces will be embedded in the measured forces and moments.   If this is the case, the calm 
water propeller side force should be subtracted from the hull maneuvering forces using the same 
procedure as was used for the rudder forces: computing the propeller side force using the 
Tempest propeller model with the wave orbital velocities set to zero and then subtracting this 
from the hull maneuvering force.  The model test data may also include the skeg forces in all the 
measured forces.  In the Level-0 theory, the skeg force will be left in the maneuvering force and 
no separate skeg force model will be applied.  In some instances the model tests are performed 
with a “bare hull” model and therefore do not include rudder forces or propeller side forces.  In 
these instances the rudder and propeller side forces should not be subtracted from the hull 
maneuvering forces, as no double counting of the rudder force is present.  The input for the 
maneuvering model must include a flag to specify whether or not the rudder and propeller side 
forces are embedded in the hull maneuvering force coefficients. 

This method includes the option to include a wide range of maneuvering coefficients.  In 
most cases only a handful of the coefficients will be used.  Depending on how the regression 
analysis is performed, different coefficients will be used or not used in the maneuvering model. 
The Son and Nomoto containership maneuvering model for instance does not include any odd 
quadratic terms (i.e. coefficients of v|v| ), so these coefficients will all be set to zero for the 
containership.  Son and Nomoto use only even quadratic terms and the odd terms are either 
linear or cubic.  Other maneuvering models may include both odd quadratic and cubic terms in 
the equations.  Several terms included in the Son and Nomoto maneuvering equations will not be 
implemented as they are already computed elsewhere within Tempest.  The terms that will be left 
out are the hull resistance and propeller thrust terms in the surge equation, as well as the rudder 
terms in all of the equations.  The Son and Nomoto model appears to compute the forces on the 
rudder in a manner similar to the Tempest rudder model, so these terms are simply left out.  
Since the rudder terms are not embedded in the coefficients, there is no need to subtract out the 
Tempest calm water rudder force from the maneuvering forces when the Son and Nomoto 
maneuvering formulation is used.  Son and Nomoto also include terms proportional to roll 
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velocity in the roll, sway, and yaw equations.  It is assumed that these terms will be included 
within the roll damping model, so they are removed from the maneuvering equations. 

6.5.2 Input 
The user will supply the set of coefficients used to compute the maneuvering forces.  Each 

coefficient will be specified at several Froude numbers.  At each time step the program will 
compute the maneuvering forces corresponding to the Froude numbers at which the coefficients 
were specified.  The code will then interpolate to obtain forces and moments for the Froude 
number based on the instantaneous speed of the ship at each time step.  For the Son and Nomoto 
(1981) containership maneuvering model the coefficients are independent of Froude number, so 
no interpolation is required. 

The list of coefficients which may be used in the equations for the surge, sway, roll, and 
yaw equations are listed in Table 6-4.   Typically only ten to twelve terms in each column will be 
used for a given model and the rest will be set to zero.  

For the heave and pitch equations, a strip-wise cross-flow drag model is used which 
requires the following input at set of stations along the hull: 

 Cff(x), B(x), x    specified for nx longitudinal positions along the hull  

Cff is a 2-D cross flow drag coefficient used to compute the viscous damping from a 2-D 
hull section as a result of the heave velocity of the section.  The default value will be 1.0.  B(x) is 
the local beam of the ship on the waterline.  Both Cff(x) and B(x) will be specified at a series of 
longitudinal positions along the length of the hull.   The drag on the 2-D section with a constant 
heave velocity is estimated as Cff(x)∙0.5∙∙ (w(x))2∙B(x)  , where x is specified in the ship-fixed 
coordinate system with the origin at the center of gravity. 

The coefficients for the surge, sway, roll, and yaw equations are derived from the rotating 
arm test data.  The rotating arm test data covers a range of parameters up to a moderate heel 
angle, yaw rate, and sway velocity.  Extrapolation outside of this range can lead to errors in the 
computed maneuvering forces.  The user will supply maximum values of heel angle, sway 
velocity and yaw rate to be used in the maneuvering equations: max, vmax,  rmax.  The absolute 
value of the roll angle, sway velocity, and yaw will be capped at the user specified maximum 
values.  In most cases the rotating arm data will reference the forces and moments to the ship 
center of gravity.  The input must specify the origin used for the empirical data.  The coefficients 
listed in Table 6-4 should be specified in a coordinate system with x forwards, y to port, and z 
upwards.  If the origin used to obtain the empirical coefficients is different from the center of 
gravity of the ship in the Tempest simulation, Tempest will first compute u, v, etc at the origin 
used for the empirical data.  Then it will compute forces and moments at the origin used for the 
empirical data.  These forces and moments will then be transformed to the Tempest origin, which 
in Level-0 is located at the center of gravity of the ship. 

6.5.3 Implementation   
The following terms are computed or defined outside of the maneuvering force module at 

each time step.  They are used as input to the maneuvering force calculations: 

q  Angular velocity about the ship-fixed y-axis in radians 
r  Angular velocities about the ship-fixed z-axis in radians 
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u,v,w Velocity of the ship at the ship-fixed reference frame origin in the ship-fixed x, y 
and z directions respectively. 

  The rudder angle in radians 
  Water density 
 Roll angle in radians 

The maneuvering equations for surge, sway, roll and yaw are all written in non-
dimensional form.  The forces, moments, velocities and rates that appear in the equations are all 
in non-dimensional form.  The forces and moments are non-dimensionalized using length-
squared or -cubed.  To account for the change in the draft of the ship as it maneuvers in waves, 
the ratio of the instantaneous midship draft to calm water midship draft is incorporated. 

forces:  0.5∙∙L2∙U2∙Tm; 
moments:  0.5∙∙ L3∙ U2∙Tm, where  

 = density of water kg/m3 
L = length between perpendiculars 

U = ship velocity, 22 vu   
Tm = ratio of the instantaneous draft over the still water draft measured at 
midships.  Tm is an attempt to scale the forces and moments by the submerged 
surface area.   

The maneuvering equations for surge, sway, roll, and yaw are based on rotating arm test 
data which covers a limited range of roll angles, sway velocities, and yaw rates.  For values 
above the maximum values specified by the user, the maximum values from the test matrix will 
be used in the maneuvering equations. 

The non-dimensional variables for the sway velocity and yaw rate are defined as:  
 v' = v/U   (absolute value not to exceed vmax/U) 

 r' = rL/U (absolute value not to exceed rmaxL/U)  

The roll angle,  and the rudder angle, , are dimensional and specified in radians.  If the 
absolute value of the roll angle exceeds max, a roll angle with magnitude max and the proper sign 
is used in the maneuvering equations.  Note that here the prime variables v' and r', are non-
dimensional, whereas the variables, v and r, are dimensional.  This differs from the convention 
used in the other sections of the theory manual, which use only dimensional velocities. 

The equations used in Tempest to compute the maneuvering contribution to the non-
dimensional surge and sway force and the non-dimensional roll and yaw moments are 
formulated using the terms listed in Table 6-4.   For each equation, each coefficient is multiplied 
by the values listed in the last column of Table 6-4, and then the sum of all the terms gives the 
total maneuvering force or moment.  For a given equation, many of the coefficients will be zero.  
The coefficients that are specified as non-zero will depend on the maneuvering model specified.  
Certain terms may always be zero for a symmetric ship (such as odd terms of v and r for the 
surge equation), but these terms are still included in Table 6-4 for completeness. 
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Table 6-4  Coefficients used by the Maneuvering Force Model for the Surge and Sway Force and 
the Roll and Yaw Moment. 

Surge 
Coefficient 

Sway 
Coefficient 

Roll Coefficient Yaw 
Coefficient 

Multiplier 

SurInt SwyInt RolInt YawInt 1 
SurR SwyR RolR YawR r' 

SurRAR SwyRAR RolRAR YawRAR r' |r'| 
SurR2 SwyR2 RolR2 YawR2 (r')2 
SurR3 SwyR3 RolR3 YawR3 (r')3 
SurV SwyV RolV YawV v' 

SurVAV SwyVAV RolVAV YawVAV v' |v'| 
SurV2 SwyV2 RolV2 YawV2 (v')2 
SurV3 SwyV3 RolV3 YawV3 (v')3 
SurP SwyP RolP YawP  

SurPAP SwyPAP RolPAP YawPAP  || 
SurP2 SwyP2 RolP2 YawP2 2 
SurP3 SwyP3 RolP3 YawP3 3 
SurD SwyD RolD YawD  

SurD2 SwyD2 RolD2 YawD2 2 
SurD3 SwyD3 RolD3 YawD3 3 
SurRV SwyRV RolRV YawRV r' v' 

SurV2R SwyV2R RolV2R YawV2R r' (v')2 
SurR2V SwyR2V RolR2V YawR2V (r')2 v' 

SurV2R2 SwyV2R2 RolV2R2 YawV2R2 (r')2 v')2 
SurRAV SwyRAV RolRAV YawRAV r' |v'| 
SurVAR SwyVAR RolVAR YawVAR |r'| v' 
SurPAR SwyPAR RolPAR YawPAR  |r'| 
SurRAP SwyRAP RolRAP YawRAP || r' 
SurPR2 SwyPR2 RolPR2 YawPR2  (r')2 
SurRP2 SwyRP2 RolRP2 YawRP2 2 r' 
SurPAV SwyPAV RolPAV YawPAV  |v'| 
SurVAP SwyVAP RolVAP YawVAP || v' 
SurPV2 SwyPV2 RolPV2 YawPV2  (v')2 
SurVP2 SwyVP2 RolVP2 YawVP2 2 v' 
SurRD SwyRD RolRD YawRD r'  
SurVD SwyVD RolVD YawVD v'  
SurDR2 SwyDR2 RolDR2 YawDR2 (r')2  
SurDV2 SwyDV2 RolDV2 YawDV2 (v')2  
SurRD2 SwyRD2 RolRD2 YawRD2 r' 2 
SurVD2 SwyVD2 RolVD2 YawVD2 v' 2 
SurDAR SwyDAR RolDAR YawDAR |r'|  
SurDAV SwyDAV RolDAV YawDAV |v'|  
SurRAD SwyRAD RolRAD YawRAD r' || 
SurVAD SwyVAD RolVAD YawVAD v' || 
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   Fx'  =   SurInt   +  r'·SurR  + r'|r'| ·SurRAR    +  (r')2·SurR2    + … 

Fy'  =  SwyInt  +  r'·SwyR + r'|r'| ·SwyRAR  +  (r')2·SwyR2  + … 

 Mx' =  RolInt    +  r'·RolR  + r'|r'| ·RolRAR   +  (r')2·RolR2    + … 

       Mz'  =  YawInt  +  r'·YawR + r'|r'| ·YawRAR +  (r')2·YawR2  + … 

(6.66)

The forces will then be converted to dimensional form (in N and N-m) and added to the other 
force components.    

 Fx = Fx'·0.5··L2·U2·Tm    ,    Fy = Fy'·0.5··L2·U2·Tm 

                            Mx = Mx'·0.5··L3·U2·Tm    ,    Mz = Mz'·0.5··L3·U2·Tm 
(6.67)

Fx, Fy, Mx and Mz are already defined in the ship-fixed reference frame and are added to the 
other force components to compute the total force and moment acting on the ship at each time 
step.   

The heave and pitch maneuvering forces are computed by computing the cross flow drag at 
a set of stations along the length of the hull, and then integrating over the length of the hull to 
compute the heave force and pitch moment.  The local heave velocity of a section located at 
longitudinal position x from the center of gravity can be computed from the heave velocity at the 
center of gravity, w, and the rotational velocity about the ship-fixed y-axis, q: 

w(x) = w - q·x (6.68)

The vertical cross flow drag force on the section is then computed as: 

 2)()()(
2

1
xwxBxCffDrag    (6.69)

The heave force, Fz, and pitch moment, My, are then computed by integrating the drag over the 
length of the hull: 

   dxxwxBxCffFz
2)()()(

2

1   (6.70)

   dxxwxBxCffxM y
2)()()(

2

1   (6.71)

The integration is performed over the wetted length of the hull.  A trapezoidal rule 
integration scheme can be used.  The heave force and pitch moment computed using the above 
formulae are in dimensional form and are defined in the ship-fixed frame.  Fz and My are added 
to the other force components to compute the total force and moment action on the ship at each 
time step.  The complete bare hull maneuvering force vector is then defined as: 

),,,,,( zyxzyxman MMMFFFF 


 (6.72)

 

6.5.4 Zero Speed Performance 
Due to the fact that these terms are divided by ship speed, non-dimensional sway velocity, 

v', and yaw rate, r', have the potential to be very large as ship speed approaches zero.  This is 
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avoided by treating some terms differently as ship speed approaches zero.  The uncertainty of the 
maneuvering model coefficients at these speeds warrants this pragmatic approach. 

Speeds less than 0.005m/s are considered zero speed.  In this case, Fn, non-dimensional 
sway velocity and yaw rate are all set to zero in the calculations.  This avoids division by zero 
errors when non-dimensionalizing sway velocity and yaw rate. 

As the non-dimensional forces and moments are multiplied by velocity squared, terms less 
than third order, e.g., r'v' or (v')2, are well behaved as ship speed goes to zero.  The coefficients 
for third order and higher terms, e.g., (r')2v', are linearly reduced to zero for Fn < 0.015. 

The fraction of Tempest rudder forces subtracted from the hull forces is linearly reduced 
from 100% to 0% for Fn < 0.015.  While this appears to be double counting the rudder at near 
zero speeds, it is actually gradually switching rudder models at near zero speeds.  Tests indicated 
the coefficient based rudder model acted as though there was no rudder at near-zero speeds. 

6.6 Rudder and Fin forces 

6.6.1 Summary of Theory 
This section describes the theory for computing the rudder force for a ship in a seaway.  

The method will be implemented in the time domain dynamic stability code Tempest.   The 
theory is based primarily on the empirical formulae developed by Wicker and Fehlner (1958) and 
is developed for the Level-0 implementation of Tempest.   

With some refinements, the theory may also be appropriate for the higher levels of 
Tempest.  A brief synopsis of the theory will be described in this section, with the details 
provided in the implementation section below.  The ships for which Tempest is currently 
envisioned all have moveable rudders, as opposed to flapped rudders, semi-balanced rudders on 
a horn, etc.  Therefore the rudder model described here applies only to all movable rudders and 
fins.  Prior to the start of the time stepping calculations the program will establish formulae for 
the lift and drag coefficients of the rudder as a function of angle of attack based on empirical 
data.  Then at each time step the local flow velocity at the rudder will be computed.  The velocity 
will include the inflow resulting from the motion of the ship, the wave orbital velocity, and the 
propeller slipstream.  The rudder deflection angle will be provided at each time step from the 
autopilot algorithm, which is described in a separate document.  From the local velocity vector 
and the rudder deflection angle, the angle of attack of the rudder will be determined, which will 
be used to compute the lift and drag on the rudder.  The lift and drag forces will be transformed 
to forces and moments acting on the ship in the ship-fixed reference frame.  If the rudder is only 
partially submerged, the forces will be adjusted by the ratio of the submerged area of the rudder 
to the total area of the rudder. 
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Figure 6-1  Definition of some rudder parameters. (Y axis into page on left half figure, X axis into 
page on right half figure. The value of R is negative as shown) 

6.6.2 Input 
The user will be required to provide the following input for the rudder.  The first set of 

input is required to establish the position and geometry of the rudder and the second set of input 
defines some of the coefficients required for computing the rudder force.   

The position and geometry of the rudder will be computed from user specified values for 
the chord length of the rudder at the root and tip, and the (x,y,z) offsets of the quarter-chord point 
at the root and tip of the rudder: cr, ct, (xr,yr,zr) and (xt,yt,zt) shown in Figure 6-1.  

The other geometric rudder parameters such as area, span, dihedral angle, etc. can all be 
computed from these values.  Internally the offsets of the quarter-chord point at the tip (xt,yt,zt) 
and at the root (xr,yr,zr)  will be referenced to the ship-fixed origin.  The user will enter the 
distances to these points forward from the AP and above the baseline.  This will be converted 
internally to the position of the quarter-chord points relative to the ship CG in the ship-fixed 
frame. 

The user must specify several other parameters to compute the lift and drag on the rudder.  
Some values will have preset default values, in which case the user will have the option to 
specify a value.  The additional inputs are: 

 ae – the effective aspect ratio of the rudder.   The geometric aspect ratio, a, of the rudder 
can be computed as: cb / .  The effective aspect ratio accounts for the mirror image effect 
when the rudder is flush with the hull.  Typically the effective aspect ratio is assumed to 
be twice the geometric aspect ratio.  However, a different value may be specified if a 
large rudder stool is used or the rudder has a large tip plate.  A large rudder stool 
separates the rudder from the hull which reduces ae, while a tip plate would increase the 
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loading near the rudder tip, which increases ae .   The effective aspect ratio is used when 
computing the lift and drag coefficients and the stall angle of the rudder. 

 R  - flow straightening coefficient.  This is used to adjust the angle of attack of the rudder 
to account for the flow straightening influence of the hull and propeller 

 Cd0 – minimum sectional drag coefficient.  The default value will be 0.0065, which 
corresponds to a NACA 0015 section 

 CDC – crossflow drag coefficient from Whicker and Fehlner (1958).  The user will have 
the option to either enter this coefficient directly, or to specify whether the tip shape is 
square or faired and have the program compute the coefficient based on the data in 
Whicker and Fehlner (1958) (which expressed the coefficient as a function of the tip 
shape and taper ratio). 

  – rudder deflection angle.  This will be provided by the controller algorithm described 
in Section 5 at each time step. 

 S – stall angle.  The program will compute the default value of the stall angle using the 
formula listed in “Step 1” of the implementation section.  The user may choose to 
override the default value by specifying a value directly 

 CN – Normal force coefficient for stalled wing.  The default value will be 1.8 as 
recommended by Hoerner (1975).   

6.6.3 Implementation 
Step 1 is performed before the start of the time stepping procedure.  The remaining steps 

are performed at each time step.  All the steps will be performed separately for each rudder on 
the ship. 

Step 1.  Read input, compute time independent values 

Prior to the start of the time stepping calculations the program will first read in all the user 
supplied inputs.  Then the geometry information required for computing the force and center of 
pressure for the rudder will be computed.   

The mean chord and span are computed as: 

 rt ccc 
2

1   ,        22
rtrt zzyyb   (6.73)

Then the area and geometric aspect ratio of the rudder can be computed: 

cbAR         ,       
c

ba   (6.74)

The dihedral angle of the rudder and the sweep angle of the quarter chord line will be 
computed as: 
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The spanwise location of the center of pressure will be computed by assuming an elliptical 
spanwise loading distribution, and in the chordwise direction it will be assumed that the center of 
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pressure lies on the quarter chord line.  With these assumptions the location of the center of 
pressure is: 
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(6.76)

The velocity will be computed at each time step at the mid-span point along the quarter 
chord line: 
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The velocity will first be computed in the ship-fixed reference frame, and then be 
transformed to a frame with the z axis parallel to the rudder stock, as indicated by the axis 
system marked (x’,y’,z’) in Figure 6-1.   The transformation matrix used to compute velocities in 
the rudder frame from velocities defined in the ship-fixed frame is: 
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(6.78)

where (u,v,w) is the velocity vector in the ship-fixed reference frame and (u’,v’,w’) is the 
velocity in the rudder frame.  The transformation matrix is orthogonal, so its inverse is equal to 
its transpose. 

The lift slope coefficient, d
dC L , and the stall angle, S, can be computed based on the 

geometry and user specified value of the effective aspect ratio.  The formula used for the lift 
slope coefficient is that developed by Whicker and Fehlner (1958) based on their experimental 
data: 
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 (6.79)

If a value for the cross flow drag is not specified by the user, a value should be computed 
based on the Whicker and Fehlner (1958) data: 

r

t
c

c  

7.01.0 DCC  ,    for rudders with faired tips 

6.11.0 DCC   ,    for rudders with square tips 

 

(6.80)

Whicker and Fehlner (1958) recorded the stall angles for the fins examined in their wind 
tunnel experiments and Lloyd (1989) fit formulas to their data.  The rudder will operate in the 
slipstream of the propeller, and the turbulence in this flow delays the stall to a higher angle from 
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what was recorded in the Whicker and Fehlner (1958) wind tunnel tests.  If a value for stall angle 
is not specified by the user, Tempest will use the formula derived by Lloyd(1989) to specify the 
rudder stall angle with an additional 10 degrees added to account for the turbulence in the 
propeller slipstream: 

 

2075.0445.0225.1 eeS aa     radians   for ae<3.0 

565.0S  radians   for ae >3.0 

 

(6.81)

 

Step 2. Compute velocity vector at midspan point on the rudder. 

At each time step the velocity vector at the mid-span point along the rudder quarter-chord 
line (xm,ym,zm)  is computed.  The velocity is computed by first adding the velocity from the 
motion of the ship to the wave orbital velocity, and then adding the velocity added by the 
propeller slipstream.   The procedure for computing the wave orbital velocity at an arbitrary 
point in space is described in a separate document.  The computations for the wave orbital 
velocity are performed first in the earth-fixed frame, but must be transformed to the ship-fixed 
frame before being added to the velocities from the motion of the ship.  The velocity vector at 
the rudder mid-span point (xm,ym,zm) is computed as: 

























































0

0

)1( PROP

w

w

w

mm

mm

mmF

R

U

w

v

u

qxpyw

pzrxv

ryqzwu

U


  , 
(6.82)

where: (u,v,w) is the velocity of the ship defined at the ship-fixed origin,  (p,q,r) is the rotational 
velocity of the ship, (uw,vw,ww) is the wave orbital velocity at the center of the propeller disk, wF 
is the wake fraction coefficient, which is discussed in Section 6.7, and UPROP  is the added axial 
velocity from the propeller.  All the above quantities are defined in the ship-fixed reference 

frame.  The negative sign before the first and last vectors in the formula for RU


 indicates that the 
inflow velocity into the rudder is in the opposite direction from the ship motion and the 
additional velocity from the propeller slipstream acts along the negative x axis in the ship frame. 

The additional velocity in the ship-fixed x direction from the propeller slipstream is 
computed following the method described in Söding (1981 and 1999).    First the axial propeller 
slipstream velocity far downstream from the propeller is computed from the momentum equation 
as: 

TA CUV  1  (6.83)

From the propeller force calculations, the values for KT and J are available, and from these 
CT and UA can be computed as: 
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The radius of the propeller slipstream far downstream from the propeller based on 
continuity is: 
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where RO is the propeller radius equal to ½D.  The radius of the propeller slipstream at the 
location of the rudder is approximated by the formula: 
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(6.86)

where  is the distance from the propeller to the rudder normalized by the propeller radius:     
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The velocity in the propeller slipstream at the location of the rudder is then computed from 
the continuity equation: 

2

2

RUD

RUD

X
X R

R
VV 
    (6.88)

The additional velocity from the propeller is added to the rudder inflow velocity, which can then 
be computed by subtracting the inflow velocity to the propeller: 

AXPROP UVU
RUD

  (6.89)

For the inclusion of the propeller slipstream velocity on the rudder, the inclination of the 
propeller shaft is ignored (at least for Level-0).  Söding (1999) and Brix (1993) also include 
some additional corrections to the influence of the propeller on the rudder lift by accounting for 
the influence of turbulent mixing in the propeller slipstream and the influence of the finite width 
of the slipstream.   These terms will not be included in the Level-0 implementation of Tempest. 

 

Step 3. Compute angle of attack for the rudder. 

To compute the angle of attack on the rudder, the inflow velocity into the rudder is first 
transformed into the rudder frame (the (x’,y’,z’) frame shown in Figure 6-1).  
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The angle of attack is then determined by examining the velocity components in the x’y’ 
plane as shown in Figure 6-2.  The angle of the inflow into the rudder relative to the x’ axis is 
computed as:  


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



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
R

R

u

v
arctan  (6.91)

This angle is adjusted by the flow straightening coefficient, R, to account for the flow 
straightening influence of the hull and propeller.  Molland and Turnock (2002) discussed the use 
of the flow straightening coefficient and performed a set of experiments to determine values of R 
for several simple configurations.  In Tempest, the user will provide a value of R as input, with 
the default value being 1.0.  

 R  (6.92)

The angle of attack is then computed by subtracting ’ from the rudder deflection angle, , 
which is provided by the autopilot routine at each time step: 

    (6.93)

The rudder deflection angle  is defined as positive using a right hand rule about the z' axis, 
which points upwards (out of the paper in Figure 6-2) resulting in a turn to starboard as shown in  
Figure 6-2.  The positive direction for the angles  and  are defined in the same manner.  The κ 
factor accounts for fixed portions of the rudder (the rudder stool) that effectively reduce the 
angle of attack.  κ is set equal to the ratio of the planform area of the movable rudder over the 
total planform area of the rudder and stool.  For small to moderate rudder deflection angles, the 
rudder and stool are modeled as a single lifting surface with a variation in angle of attack along 
the span. 

 

Figure 6-2  Inflow into the rudder and calculation of angle of attack. 
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Step 4. Compute the Lift and Drag on the rudder 

For cases where the angle of attack is below the stall angle, the lift and drag coefficients are 
computed from the empirical formulae derived in Whicker and Fehlner (1958). 

For   S    : 
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(6.94)

where 
d

dCL  and CDC were computed in Step 1.  For cases where the angle of attack is greater 

than the stall angle, it will be assumed that the flow is completely separated at the leading and 
trailing edge of the rudder, and the force is normal to the chord line of the rudder.  The resultant 
lift and drag coefficients in this condition are computed from the formulae found in Hoerner 
(1975): 

For S   , 

0max,cossin BCCBC LNL    
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2sin BCCBC DND    

(6.95) 

where B, B0, CL,max, and CD,max have been included to create a cubic transition between the fully 
stalled flat plate and the maximum CL condition when S  and are defined as: 
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(6.96) 

After the lift and drag coefficients are computed, the lift and drag can be calculated.  The 
velocity used to compute the forces from the lift and drag coefficients is the component of the 
inflow velocity to the rudder in the x’y’ plane. 
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2
1   

DRR CAVd 2

2
1   

(6.97)

(6.98)

The lower case d is used here for drag to avoid confusion with the symbol used earlier for 
the propeller diameter.   

 

Step 5. Correct rudder lift and drag for partial rudder submergence. 

If the rudder is not completely submerged, the lift and drag on the rudder will be corrected 
to account for this.  The lift and drag will be adjusted based on the approximate percentage of the 
rudder area that is submerged.  This is equivalent to replacing AR in the formulae for lift and drag 
listed above with the submerged rudder area ARS.  To approximate ARS the wave elevation at the 
rudder is first computed.  Let zWR be the wave elevation above the rudder location (xm,ym).  If the 
rudder tip is above the wave: zt > zWR, then the rudder is completely out of the water and the 
rudder lift and drag are set to zero.  If the rudder root is below the wave: zr > zWR, then the rudder 
is completely submerged and no adjustment to the lift and drag from step 4 is required.  
Otherwise the submerged area of the rudder is computed as follows.  First compute f, the 
percentage of the rudder span that is submerged: 
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  (6.99)

The submerged area of the rudder can then be approximated as: 

  bfccbfcA trtRS
2

2
1   (6.100)

The lift and drag on the rudder are then recalculated using ARS in place of AR.   
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(6.101)

 

Step 6. Compute rudder forces and moments in the ship-fixed frame. 

The lift and drag force on the rudder act in the x’y’ plane in the direction perpendicular and 
parallel to the inflow velocity to the rudder defined by the angle ’.  To resolve the forces in the 
ship-fixed frame, the forces are first transformed to forces in the x’ and y’ directions, and then 
are transformed to the ship-fixed frame.  The forces in the x’ and y’ directions are: 

'sin'cos'  LdFXR   

'sin'cos'  dLFYR   

(6.102)
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The forces are then transformed to the ship-fixed frame using the transpose of the 
transformation matrix defined in Step 1. 
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The rudder force acts at the center of pressure, (xc,yc,zc), which was computed in Step 1.  

The moments which result from the rudder force are computed from RF


 and (xc,yc,zc): 
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(6.104)

RF


 and RM


 are the force and moment from the rudder acting at the ship-fixed reference 
frame origin, which is the ship CG in Level-0.  These two vectors are added to the other force 
components to compute the total force and moment action on the ship at each time step. 

6.6.4 Notes on ship specific empirical data  
Rudder data either from measurements in the Large Cavitation Tunnel (LCC) or from CFD 

computations are available for the rudder designs for some ships.   When available this data 
should be used to help specify the lift and drag coefficients more accurately for the rudder model 
implemented in Tempest.  Within the Level-0 theory discussed in this document, the data from 
LCC tests could be used to specify the stall angle and to determine a value for the effective 
aspect ratio that closely matches the lift slope curve.   

One difficulty in basing the lift and drag coefficients solely on the data from the LCC tests, 
is that these tests have been performed only with the ship traveling straight ahead with the rudder 
deflected at different angles.  The influence of the ship drift angle and cross flow from the wave 
induced velocity would need to be accounted for in some manner.    If the stool on which the 
rudder sits has a longer span than a typical rudder stool, the lift on the rudder stool should be 
considered.  The rudder force model currently computes the force only on the rudder, not on the 
stool.  The Level-0 maneuvering force model was developed from rotating arm test data with the 
rudders and rudder stool in place, and the rotating arm tests measured the total force on the 
model including the forces from rudder and the rudder stool.  The force on the rudder is then 
computed and subtracted out to obtain force coefficients for building the maneuvering model.  
However the force from the rudder stool should still be included in the maneuvering force model, 
so no separate calculation of the force from the rudder stool should be required, if the Level-0 
maneuvering model is used. 

The stall angle, S, can be estimated from empirical data.  The stall angle is dependent 
primarily on the aspect ratio, profile shape, thickness, Reynolds number, surface roughness, and 
the turbulence in the inflow (Brix 1993).  This makes an accurate prediction of the stall angle 
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difficult.  Figure 6-3 shows the empirical formula used in Level-0 Tempest which is based on 
Lloyd’s analysis of the Whicker and Fehlner data. 

 

 

Figure 6-3  Stall angle formula derived by Lloyd (1989) based on Whicker and Fehlner (1958)  

 

Several empirical formulae are available for computing the lift coefficient slope ( d
dCL ), 

as a function of effective aspect ratio.  Figure 6-4 compares the formulae proposed by Hoerner 
(1975), Söding (1999) and Whicker and Fehlner (1958).  There is much less empirical data 
available for the lift and drag on rudders at angles of attack significantly over the stall angle.  
Figure 6-5 is taken from Hoerner (1975) and show the lift from several 2-D foil experiments.  
Figure 6-6 shows the computed lift and drag coefficients using the formulae specified for the 
Tempest Level-0 theory over the full range of angles of attack from 0 to 180 for a rectangular 
foil with an aspect ratio of 2.  The curve for the lift coefficient compares well with the 2-D test 
data from Hoerner (1975).  
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Figure 6-4  Comparison of formulae for lift coefficient slope. 

 

 

 

Figure 6-5 Lift on 2D foils, past stall angle, reproduced from Hoerner (1975) 
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Figure 6-6 Lift and Drag coefficients computed for a rectangular foil with an aspect ratio of 2.0, 
based on the formulae described in the Tempest Level-0 theory.  

 

6.7  Propulsor Force 

6.7.1 Summary of Theory 
This section describes the theory for computing the propeller force for a ship in a seaway.  

This method will be implemented in the time domain dynamic stability code Tempest.  The 
theory is initially developed for the Level-0 implementation of Tempest.   

With some refinements, the theory may also be appropriate for the higher levels of 
Tempest.  The theory is developed initially for conventional fixed-pitch propellers.  Extensions 
to the theory would be required to model controllable pitch propellers, waterjets, and other non-
conventional propulsors.  

A brief synopsis of the theory will be described in this section, with the details provided in 
the implementation section below.  The propeller thrust will be determined by interpolating the 
user-supplied open water propeller thrust curve (KT vs. J) at each time step.  The advance 
coefficient, J, will be computed at each step from the instantaneous motion of the ship and the 
wave orbital velocity.  The velocity will be computed at a single point located at the center of the 
propeller disk.  The velocity vector at this point will be decomposed into a component parallel to 
the propeller shaft and a cross flow velocity component.   The influence of the ship hull on the 
propeller inflow will be accounted for using the Taylor wake fraction coefficient and the increase 
in hull resistance from the propeller will be accounted for using a thrust deduction fraction.    
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Propeller forces that are perpendicular to the shaft axis resulting from cross flow will be 
estimated using empirical formulae described by Fuhs and Dai (2007).   If the propeller is only 
partially submerged, the forces will be adjusted by the ratio of the submerged area of the 
propeller disk to the total area of the disk. 

6.7.2 Input 
The user will be required to provide the following input to characterize the propeller 

performance.   The user will supply a set of points describing the open water propeller thrust 
curve: KT vs. J.   The coefficients KT and J are defined below:  

42Dn

T
KT 

  (6.105)

Dn

V
J A  (6.106)

The curve should be defined by a sufficient number of points for KT to be interpolated at 
each time step, and should include the entire first quadrant of the open water curve including a 
value for J = 0 up to the value of J where KT = 0.   Negative values of J may also be entered, to 
allow for reverse flow into the propeller. 

In addition the user will supply the following values: 

D  diameter of propeller 

rpm rotations per minute (converted to rotations per second internally) 

  density of water 

wF Taylor wake fraction coefficient 

tP  thrust deduction coefficient 

xP,yP,zP position of the center of the propeller disk in ship-fixed frame 

(The user will enter the distance of the propeller forward from the AP and above 
the baseline, this will be converted internally to the position of the propeller 
relative to the ship CG in the ship-fixed frame.) 

S, S angles defining propeller shaft orientation 

  flow straightening factor 

RHP      integer flag to indicate whether propeller is right hand turning (+1) or left hand 
turning (-1).   A  right hand turning propeller will turn clockwise when viewed 
from the stern looking forward. 

 

The Taylor wake fraction coefficient is used to adjust the velocity into the propeller to 
account from the presence of the ship hull and is defined as: 

V
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
   , (6.107)
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where V is the axial velocity at the location of the propeller in the absence of the ship hull and VA 
is the axial component of local velocity vector at the center of the propeller disk in the presence 
of the hull. 

The thrust deduction fraction describes the additional resistance on the hull resulting from 
the propeller – hull interactions.  Traditionally this additional resistance is thought of as a 
reduction of the propeller thrust.  The thrust deduction fraction is defined as: 

T

RT
t hull

P


  , (6.108)

where Rhull is the towed resistance of the hull without the propeller and T is the propeller thrust.  
Methods for determining wF and tP for twin screw destroyers can be found in Hurwitz (1980). 

The flow straightening factor is an optional input variable that will be used to adjust the 
magnitude of the cross flow velocity to account for the influence the ship hull and skeg have on 
straightening the flow into the propeller.  It is defined as: 

S

S


 '    , (6.109)

where S is the angle between the total velocity vector at the propeller and the shaft axis in the 
absence of the hull and S’ is the same angle accounting for the presence of the hull.  A default 
value of  = 1.0 will be used if the user does not supply a value. 

 

6.7.3 Implementation 
Step 1 is performed before the start of the time stepping procedure.  The remaining steps 

are performed at each time step.  All of the steps will be performed separately for each propeller 
on the ship. 

 

Step 1.   Read input, compute time independent values 

Prior to the start of the time stepping calculations the program will first read in all the user 
supplied inputs.  A unit vector defining the direction of the propeller shaft in the ship-fixed 
reference frame will be defined using the formula: 
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(6.110)

where, S  describes the vertical inclination of the propeller shaft and is defined as the angle 
between the x-axis of the ship-fixed frame and the projection of the shaft axis onto the vertical 
plane of symmetry of the ship.  A positive angle indicates that the shaft points downwards.  S 
describes the orientation of the propeller shaft in the horizontal plane relative to the ship x-axis 
with a positive angle indicating that the shaft points to port. 
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Step 2. Compute velocity vector at center of propeller disk 

At each time step the velocity vector at the center of the propeller disk is computed.  The 
velocity is computed by adding the velocity from the motion of the ship to the wave orbital 
velocity.   The procedure for computing the wave orbital velocity at an arbitrary point in space is 
described in a separate document.  The computations for the wave orbital velocity are performed 
first in the earth-fixed frame, but must be transformed to the ship-fixed frame before being added 
to the velocities from the motion of the ship.  The velocity vector at the center of the propeller 
disk (xp,yp,zp) is computed as: 
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(6.111)

where, (u,v,w) is the velocity of the ship defined at the ship-fixed origin,  (p,q,r) is the rotational 
velocity of the ship, (xp,yp,zp) is the position of the center of the propeller disk and (uw,vw,ww) is 
the wave orbital velocity at the center of the propeller disk.  All the above quantities are defined 

in the ship-fixed reference frame.  The negative sign before the first vector in the formula for PU


 
indicates the inflow velocity into the propeller is in the opposite direction from the ship motion. 

 

Step 3.  Decompose velocities into components parallel and perpendicular to shaft.  
Compute cross flow angle and velocity. 

The component of the velocity parallel to the propeller shaft is the dot product of the 
velocity vector with the unit vector parallel to the shaft axis: 
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 

 

 (6.112)

The cross flow velocity is then the difference between the total velocity vector and the 
component parallel to the shaft: 

SAPCROSS nUUU


  (6.113)

The unit normal vector in the direction of the cross flow can be computed from crossU


: 
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and the cross flow angle, S, is defined as: 
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S should always be a positive angle between 0 and /2.   The unit vector defining the direction 
perpendicular to both the shaft axis and the cross flow is computed as the cross product of the 
unit vectors defining the shaft axis and cross flow directions: 
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(6.116)

Defined in this way, Nn


 will point upwards when the cross flow is to starboard and point 

downwards when the cross flow is to port.  The magnitude of the vector formed by the cross 

product of two vectors is defined as: sinbaba


 , where  is the angle between the two 

vectors.  In the case of CS nn


 , both vectors are unit vectors and they are perpendicular, so the 

angle between them should be 90°.  They should also have a magnitude of the cross product 
vector equal to one.  Computing the magnitude of this vector would provide a useful check. 

 

Step 4. Compute the propeller thrust, side force and normal force 

The propeller thrust is computed by interpolating the user supplied KT vs. J.  The advance 
coefficient J is first computed from the axial velocity adjusted to account for the presence of the 
hull using the Taylor wake fraction: 

Dn

wU
J FA )1( 
  (6.117)

The value for KT is then obtained by interpolating the user supplied data.  If the input data 
does not cover this range, it should be extrapolated to include these end points, with a warning 
printed to the output file.  Negative values of J may also be specified to provide data for reverse 
flow into the propeller, where UA is negative and n is positive.   If the computed value for J is 
outside the range of user-supplied data for KT vs. J, extrapolation should not be used, and the 
value used for KT should remain constant outside the range of specified data.  In the Level-0 
implementation it is assumed that the revolutions per second, n, is a constant value input by the 
user.  Later implementations may improve on this to account for the influence of the propeller 
loading on the rpm of the propeller.  If the value for the rotational speed, n, is zero, then both J 
and KT should be set to zero along with all the propeller forces.  The KT vs. J should cover values 
of J ranging from 0 to the value of J where the thrust is zero.   

After computing KT, the thrust is computed as:  

T = KT  n2 D4 (6.118)

For cases where the UA is very small, the cross flow angle, S, as computed above may give 
values close to 90° even for small cross flow velocities.  It would be expected that the induced 
velocity into the propeller would dominate the local flow in these cases.  Therefore, after the 
thrust is computed, the velocity induced by the propeller at the center of the propeller disk will 
be computed from momentum theory as: 
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If the value computed for UA_PROP is greater than the value of UA, then the cross flow angle, 
S, will be recomputed replacing UA with UA_ PROP in the formula listed in Step 3. 

Next the side force and normal force are computed based on the empirical formulae derived 
in Fuhs and Dai (2007).   

FCROSS = 1.716 T sin(S) 

FNORM  = 0.2 FCROSS 

 

(6.120)

where  is an optional input value with a default value of 1.0 that may be used to account for the 
flow straightening influence of the hull.   

 

Step 5. Compute submerged area of the propeller disk 

The following is one way to calculate the submerged area of the propeller disk. The 
calculation of the submerged area of the propeller disk, SA , is performed in the earth-fixed frame.  

The vertical position of the center of the propeller disk in the earth-fixed frame, E
PZ , is first 

computed from (xP,yP,zP) using the transformation formulae described in the Section 3.2.  The 
“E” superscripts on variables in this section indicate that the values are defined in the earth-fixed 

frame.  E
WZ  is the wave elevation directly above the propeller.  It is assumed that the wave is 

long relative to the diameter of the propeller, so the wave height is assumed to be constant above 
the propeller.  The inclination of the shaft is also ignored during the calculation of the submerged 
area.  The total area of the propeller disk is: 2RAD  , where R is the propeller radius, ½ D. 

If the value of E
WZ  is greater than RZ E

P  , then the propeller is completely submerged and

DS AA  .   If the value of E
WZ  is less than RZ E

P  , then the propeller is completely out of the 

water and 0SA .  For all other conditions, the propeller is partially submerged and the 

submerged area must be computed.   This calculation can be made by first computing the angle   
shown in Figure 6-7. 








 


R

ZZ E
P

E
Warcsin  (6.121)

The angle   will be between 2
  and 2

 .  It will be positive if the wave is higher than 

the center of the propeller disk and negative if the wave is below the center of the propeller disk.  
The submerged area can now be computed in terms of  and R as: 







  

2
sincos2RAS  (6.122)

 



 

77 

 

 

Figure 6-7 Calculation of submerged area of propeller disk 

 An alternate way to approximate the area is to panelize the propeller disk and trim the 
panels using the undisturbed free surface as a cutting surface.  This is the approach taken by 
Tempest. 

 

Step 6.  Compute forces and moments in ship-fixed frame. 

The thrust is in the direction of the shaft axis, but in the opposite direction from the unit 
vector defining the shaft axis direction, so the thrust is applied in the direction: Sn


 .  The side 

force FCROSS is in the direction of the cross flow Cn


 for both right hand turning and left hand 

turning propellers.  The direction of the normal force, FNORM, depends on both the direction of 
the cross flow and whether the propeller is right hand turning or left hand turning.  For a right 
hand turning propeller, the normal force will point upwards if the cross flow is to port and 
downwards if the cross flow is to starboard.  The normal force will point in the opposite direction 
for a left-handed propeller.  The unit vector Nn


 is defined such that it points upwards when the 

flow is to starboard.  Therefore the direction of the normal force can be defined by the vector: 

CnRHS


 , where RHS is +1.0 for a right hand propeller and -1.0 for a left hand propeller. 

The propeller force vector in the ship-fixed reference frame can be computed from the 
force components parallel and perpendicular to the propeller shaft: 

 














 

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nRHPFnFnT
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
 

 

(6.123)

The x component of the force in the ship-fixed frame is adjusted to account for the 
additional drag on the hull resulting from the interaction between the hull and propeller using the 

E
PZ  

RZ E
P   

RZ E
P   

E
WZ  

 
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user specified thrust deduction fraction, tP.  All three components of the force are multiplied by 

the ratio of the submerged disk area to the total disk area: 
D

S
A

A .   

The moments which result from the propeller force are computed from PF


 and (xp,yp,zp): 

 






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
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
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PPZPPX
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P

yFxF

xFzF

zFyF

M


 
 

(6.124)

PF


 and PM


 are the force and moment from the propeller acting at the ship-fixed reference 
frame origin, which is the ship CG in Level-0.  These two vectors are added to the other force 
components to compute the total force and moment action on the ship at each time step. 
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